Metamath Proof Explorer


Theorem drex1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drex1 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Feb-2005) (Revised by BJ, 17-Jun-2019)

Ref Expression
Hypothesis dral1v.1 x x = y φ ψ
Assertion drex1v x x = y x φ y ψ

Proof

Step Hyp Ref Expression
1 dral1v.1 x x = y φ ψ
2 1 notbid x x = y ¬ φ ¬ ψ
3 2 dral1v x x = y x ¬ φ y ¬ ψ
4 3 notbid x x = y ¬ x ¬ φ ¬ y ¬ ψ
5 df-ex x φ ¬ x ¬ φ
6 df-ex y ψ ¬ y ¬ ψ
7 4 5 6 3bitr4g x x = y x φ y ψ