Metamath Proof Explorer


Theorem dsndxntsetndx

Description: The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds . (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion dsndxntsetndx distndxTopSetndx

Proof

Step Hyp Ref Expression
1 9re 9
2 1nn 1
3 2nn0 20
4 9nn0 90
5 9lt10 9<10
6 2 3 4 5 declti 9<12
7 1 6 gtneii 129
8 dsndx distndx=12
9 tsetndx TopSetndx=9
10 8 9 neeq12i distndxTopSetndx129
11 7 10 mpbir distndxTopSetndx