Metamath Proof Explorer


Theorem dvalvec

Description: The constructed partial vector space A for a lattice K is a left vector space. (Contributed by NM, 11-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvalvec.h H = LHyp K
dvalvec.v U = DVecA K W
Assertion dvalvec K HL W H U LVec

Proof

Step Hyp Ref Expression
1 dvalvec.h H = LHyp K
2 dvalvec.v U = DVecA K W
3 eqid LTrn K W = LTrn K W
4 eqid + U = + U
5 eqid TEndo K W = TEndo K W
6 eqid Scalar U = Scalar U
7 eqid Base K = Base K
8 eqid + Scalar U = + Scalar U
9 eqid Scalar U = Scalar U
10 eqid U = U
11 1 2 3 4 5 6 7 8 9 10 dvalveclem K HL W H U LVec