Metamath Proof Explorer


Theorem dvrfval

Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses dvrval.b B=BaseR
dvrval.t ·˙=R
dvrval.u U=UnitR
dvrval.i I=invrR
dvrval.d ×˙=/rR
Assertion dvrfval ×˙=xB,yUx·˙Iy

Proof

Step Hyp Ref Expression
1 dvrval.b B=BaseR
2 dvrval.t ·˙=R
3 dvrval.u U=UnitR
4 dvrval.i I=invrR
5 dvrval.d ×˙=/rR
6 fveq2 r=RBaser=BaseR
7 6 1 eqtr4di r=RBaser=B
8 fveq2 r=RUnitr=UnitR
9 8 3 eqtr4di r=RUnitr=U
10 fveq2 r=Rr=R
11 10 2 eqtr4di r=Rr=·˙
12 eqidd r=Rx=x
13 fveq2 r=Rinvrr=invrR
14 13 4 eqtr4di r=Rinvrr=I
15 14 fveq1d r=Rinvrry=Iy
16 11 12 15 oveq123d r=Rxrinvrry=x·˙Iy
17 7 9 16 mpoeq123dv r=RxBaser,yUnitrxrinvrry=xB,yUx·˙Iy
18 df-dvr /r=rVxBaser,yUnitrxrinvrry
19 1 fvexi BV
20 3 fvexi UV
21 19 20 mpoex xB,yUx·˙IyV
22 17 18 21 fvmpt RV/rR=xB,yUx·˙Iy
23 fvprc ¬RV/rR=
24 fvprc ¬RVBaseR=
25 1 24 eqtrid ¬RVB=
26 25 orcd ¬RVB=U=
27 0mpo0 B=U=xB,yUx·˙Iy=
28 26 27 syl ¬RVxB,yUx·˙Iy=
29 23 28 eqtr4d ¬RV/rR=xB,yUx·˙Iy
30 22 29 pm2.61i /rR=xB,yUx·˙Iy
31 5 30 eqtri ×˙=xB,yUx·˙Iy