Metamath Proof Explorer


Theorem dya2iocrfn

Description: The function returning dyadic square covering for a given size has domain ( ran I X. ran I ) . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion dya2iocrfn RFnranI×ranI

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 vex uV
5 vex vV
6 4 5 xpex u×vV
7 3 6 fnmpoi RFnranI×ranI