Metamath Proof Explorer


Theorem dya2iocct

Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017) (Revised by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion dya2iocct ranRω

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 znnen
5 nnct ω
6 endomtr ωω
7 4 5 6 mp2an ω
8 ovex x2nx+12nV
9 8 rgen2w xnx2nx+12nV
10 9 mpocti ωωx,nx2nx+12nω
11 7 7 10 mp2an x,nx2nx+12nω
12 2 11 eqbrtri Iω
13 rnct IωranIω
14 12 13 ax-mp ranIω
15 vex uV
16 vex vV
17 15 16 xpex u×vV
18 17 rgen2w uranIvranIu×vV
19 18 mpocti ranIωranIωuranI,vranIu×vω
20 3 breq1i RωuranI,vranIu×vω
21 20 biimpri uranI,vranIu×vωRω
22 rnct RωranRω
23 19 21 22 3syl ranIωranIωranRω
24 14 14 23 mp2an ranRω