Metamath Proof Explorer


Theorem dya2iocct

Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017) (Revised by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
dya2ioc.2 R = u ran I , v ran I u × v
Assertion dya2iocct ran R ω

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 dya2ioc.2 R = u ran I , v ran I u × v
4 znnen
5 nnct ω
6 endomtr ω ω
7 4 5 6 mp2an ω
8 ovex x 2 n x + 1 2 n V
9 8 rgen2w x n x 2 n x + 1 2 n V
10 9 mpocti ω ω x , n x 2 n x + 1 2 n ω
11 7 7 10 mp2an x , n x 2 n x + 1 2 n ω
12 2 11 eqbrtri I ω
13 rnct I ω ran I ω
14 12 13 ax-mp ran I ω
15 vex u V
16 vex v V
17 15 16 xpex u × v V
18 17 rgen2w u ran I v ran I u × v V
19 18 mpocti ran I ω ran I ω u ran I , v ran I u × v ω
20 3 breq1i R ω u ran I , v ran I u × v ω
21 20 biimpri u ran I , v ran I u × v ω R ω
22 rnct R ω ran R ω
23 19 21 22 3syl ran I ω ran I ω ran R ω
24 14 14 23 mp2an ran R ω