Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
3 |
|
dya2ioc.2 |
⊢ 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) |
4 |
|
znnen |
⊢ ℤ ≈ ℕ |
5 |
|
nnct |
⊢ ℕ ≼ ω |
6 |
|
endomtr |
⊢ ( ( ℤ ≈ ℕ ∧ ℕ ≼ ω ) → ℤ ≼ ω ) |
7 |
4 5 6
|
mp2an |
⊢ ℤ ≼ ω |
8 |
|
ovex |
⊢ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V |
9 |
8
|
rgen2w |
⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V |
10 |
9
|
mpocti |
⊢ ( ( ℤ ≼ ω ∧ ℤ ≼ ω ) → ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ≼ ω ) |
11 |
7 7 10
|
mp2an |
⊢ ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ≼ ω |
12 |
2 11
|
eqbrtri |
⊢ 𝐼 ≼ ω |
13 |
|
rnct |
⊢ ( 𝐼 ≼ ω → ran 𝐼 ≼ ω ) |
14 |
12 13
|
ax-mp |
⊢ ran 𝐼 ≼ ω |
15 |
|
vex |
⊢ 𝑢 ∈ V |
16 |
|
vex |
⊢ 𝑣 ∈ V |
17 |
15 16
|
xpex |
⊢ ( 𝑢 × 𝑣 ) ∈ V |
18 |
17
|
rgen2w |
⊢ ∀ 𝑢 ∈ ran 𝐼 ∀ 𝑣 ∈ ran 𝐼 ( 𝑢 × 𝑣 ) ∈ V |
19 |
18
|
mpocti |
⊢ ( ( ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω ) → ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) ≼ ω ) |
20 |
3
|
breq1i |
⊢ ( 𝑅 ≼ ω ↔ ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) ≼ ω ) |
21 |
20
|
biimpri |
⊢ ( ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) ≼ ω → 𝑅 ≼ ω ) |
22 |
|
rnct |
⊢ ( 𝑅 ≼ ω → ran 𝑅 ≼ ω ) |
23 |
19 21 22
|
3syl |
⊢ ( ( ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω ) → ran 𝑅 ≼ ω ) |
24 |
14 14 23
|
mp2an |
⊢ ran 𝑅 ≼ ω |