Metamath Proof Explorer


Theorem dya2iocct

Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017) (Revised by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
dya2ioc.1 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
dya2ioc.2 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) )
Assertion dya2iocct ran 𝑅 ≼ ω

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
2 dya2ioc.1 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
3 dya2ioc.2 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) )
4 znnen ℤ ≈ ℕ
5 nnct ℕ ≼ ω
6 endomtr ( ( ℤ ≈ ℕ ∧ ℕ ≼ ω ) → ℤ ≼ ω )
7 4 5 6 mp2an ℤ ≼ ω
8 ovex ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V
9 8 rgen2w 𝑥 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V
10 9 mpocti ( ( ℤ ≼ ω ∧ ℤ ≼ ω ) → ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ≼ ω )
11 7 7 10 mp2an ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ≼ ω
12 2 11 eqbrtri 𝐼 ≼ ω
13 rnct ( 𝐼 ≼ ω → ran 𝐼 ≼ ω )
14 12 13 ax-mp ran 𝐼 ≼ ω
15 vex 𝑢 ∈ V
16 vex 𝑣 ∈ V
17 15 16 xpex ( 𝑢 × 𝑣 ) ∈ V
18 17 rgen2w 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 ( 𝑢 × 𝑣 ) ∈ V
19 18 mpocti ( ( ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω ) → ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) ≼ ω )
20 3 breq1i ( 𝑅 ≼ ω ↔ ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) ≼ ω )
21 20 biimpri ( ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) ≼ ω → 𝑅 ≼ ω )
22 rnct ( 𝑅 ≼ ω → ran 𝑅 ≼ ω )
23 19 21 22 3syl ( ( ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω ) → ran 𝑅 ≼ ω )
24 14 14 23 mp2an ran 𝑅 ≼ ω