| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
| 3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
| 4 |
|
znnen |
|- ZZ ~~ NN |
| 5 |
|
nnct |
|- NN ~<_ _om |
| 6 |
|
endomtr |
|- ( ( ZZ ~~ NN /\ NN ~<_ _om ) -> ZZ ~<_ _om ) |
| 7 |
4 5 6
|
mp2an |
|- ZZ ~<_ _om |
| 8 |
|
ovex |
|- ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) e. _V |
| 9 |
8
|
rgen2w |
|- A. x e. ZZ A. n e. ZZ ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) e. _V |
| 10 |
9
|
mpocti |
|- ( ( ZZ ~<_ _om /\ ZZ ~<_ _om ) -> ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) ~<_ _om ) |
| 11 |
7 7 10
|
mp2an |
|- ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) ~<_ _om |
| 12 |
2 11
|
eqbrtri |
|- I ~<_ _om |
| 13 |
|
rnct |
|- ( I ~<_ _om -> ran I ~<_ _om ) |
| 14 |
12 13
|
ax-mp |
|- ran I ~<_ _om |
| 15 |
|
vex |
|- u e. _V |
| 16 |
|
vex |
|- v e. _V |
| 17 |
15 16
|
xpex |
|- ( u X. v ) e. _V |
| 18 |
17
|
rgen2w |
|- A. u e. ran I A. v e. ran I ( u X. v ) e. _V |
| 19 |
18
|
mpocti |
|- ( ( ran I ~<_ _om /\ ran I ~<_ _om ) -> ( u e. ran I , v e. ran I |-> ( u X. v ) ) ~<_ _om ) |
| 20 |
3
|
breq1i |
|- ( R ~<_ _om <-> ( u e. ran I , v e. ran I |-> ( u X. v ) ) ~<_ _om ) |
| 21 |
20
|
biimpri |
|- ( ( u e. ran I , v e. ran I |-> ( u X. v ) ) ~<_ _om -> R ~<_ _om ) |
| 22 |
|
rnct |
|- ( R ~<_ _om -> ran R ~<_ _om ) |
| 23 |
19 21 22
|
3syl |
|- ( ( ran I ~<_ _om /\ ran I ~<_ _om ) -> ran R ~<_ _om ) |
| 24 |
14 14 23
|
mp2an |
|- ran R ~<_ _om |