| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
| 3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
| 4 |
|
dya2iocnrect.1 |
|- B = ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) |
| 5 |
4
|
eleq2i |
|- ( A e. B <-> A e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) ) |
| 6 |
|
eqid |
|- ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) = ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) |
| 7 |
|
vex |
|- e e. _V |
| 8 |
|
vex |
|- f e. _V |
| 9 |
7 8
|
xpex |
|- ( e X. f ) e. _V |
| 10 |
6 9
|
elrnmpo |
|- ( A e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) <-> E. e e. ran (,) E. f e. ran (,) A = ( e X. f ) ) |
| 11 |
5 10
|
sylbb |
|- ( A e. B -> E. e e. ran (,) E. f e. ran (,) A = ( e X. f ) ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( X e. ( RR X. RR ) /\ A e. B /\ X e. A ) -> E. e e. ran (,) E. f e. ran (,) A = ( e X. f ) ) |
| 13 |
|
simp1 |
|- ( ( X e. ( RR X. RR ) /\ A e. B /\ X e. A ) -> X e. ( RR X. RR ) ) |
| 14 |
|
simp3 |
|- ( ( X e. ( RR X. RR ) /\ A e. B /\ X e. A ) -> X e. A ) |
| 15 |
12 13 14
|
jca32 |
|- ( ( X e. ( RR X. RR ) /\ A e. B /\ X e. A ) -> ( E. e e. ran (,) E. f e. ran (,) A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) ) |
| 16 |
|
r19.41vv |
|- ( E. e e. ran (,) E. f e. ran (,) ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) <-> ( E. e e. ran (,) E. f e. ran (,) A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) ) |
| 17 |
16
|
biimpri |
|- ( ( E. e e. ran (,) E. f e. ran (,) A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> E. e e. ran (,) E. f e. ran (,) ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) ) |
| 18 |
|
simprl |
|- ( ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> X e. ( RR X. RR ) ) |
| 19 |
|
simpl |
|- ( ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> A = ( e X. f ) ) |
| 20 |
|
simprr |
|- ( ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> X e. A ) |
| 21 |
20 19
|
eleqtrd |
|- ( ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> X e. ( e X. f ) ) |
| 22 |
18 19 21
|
3jca |
|- ( ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) |
| 23 |
|
simpr |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) |
| 24 |
|
xp1st |
|- ( X e. ( RR X. RR ) -> ( 1st ` X ) e. RR ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) -> ( 1st ` X ) e. RR ) |
| 26 |
25
|
adantl |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> ( 1st ` X ) e. RR ) |
| 27 |
|
simpll |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> e e. ran (,) ) |
| 28 |
|
xp1st |
|- ( X e. ( e X. f ) -> ( 1st ` X ) e. e ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) -> ( 1st ` X ) e. e ) |
| 30 |
29
|
adantl |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> ( 1st ` X ) e. e ) |
| 31 |
1 2
|
dya2icoseg2 |
|- ( ( ( 1st ` X ) e. RR /\ e e. ran (,) /\ ( 1st ` X ) e. e ) -> E. s e. ran I ( ( 1st ` X ) e. s /\ s C_ e ) ) |
| 32 |
26 27 30 31
|
syl3anc |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> E. s e. ran I ( ( 1st ` X ) e. s /\ s C_ e ) ) |
| 33 |
|
xp2nd |
|- ( X e. ( RR X. RR ) -> ( 2nd ` X ) e. RR ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) -> ( 2nd ` X ) e. RR ) |
| 35 |
34
|
adantl |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> ( 2nd ` X ) e. RR ) |
| 36 |
|
simplr |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> f e. ran (,) ) |
| 37 |
|
xp2nd |
|- ( X e. ( e X. f ) -> ( 2nd ` X ) e. f ) |
| 38 |
37
|
3ad2ant3 |
|- ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) -> ( 2nd ` X ) e. f ) |
| 39 |
38
|
adantl |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> ( 2nd ` X ) e. f ) |
| 40 |
1 2
|
dya2icoseg2 |
|- ( ( ( 2nd ` X ) e. RR /\ f e. ran (,) /\ ( 2nd ` X ) e. f ) -> E. t e. ran I ( ( 2nd ` X ) e. t /\ t C_ f ) ) |
| 41 |
35 36 39 40
|
syl3anc |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> E. t e. ran I ( ( 2nd ` X ) e. t /\ t C_ f ) ) |
| 42 |
|
reeanv |
|- ( E. s e. ran I E. t e. ran I ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) <-> ( E. s e. ran I ( ( 1st ` X ) e. s /\ s C_ e ) /\ E. t e. ran I ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) |
| 43 |
32 41 42
|
sylanbrc |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> E. s e. ran I E. t e. ran I ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) |
| 44 |
|
eqid |
|- ( s X. t ) = ( s X. t ) |
| 45 |
|
xpeq1 |
|- ( u = s -> ( u X. v ) = ( s X. v ) ) |
| 46 |
45
|
eqeq2d |
|- ( u = s -> ( ( s X. t ) = ( u X. v ) <-> ( s X. t ) = ( s X. v ) ) ) |
| 47 |
|
xpeq2 |
|- ( v = t -> ( s X. v ) = ( s X. t ) ) |
| 48 |
47
|
eqeq2d |
|- ( v = t -> ( ( s X. t ) = ( s X. v ) <-> ( s X. t ) = ( s X. t ) ) ) |
| 49 |
46 48
|
rspc2ev |
|- ( ( s e. ran I /\ t e. ran I /\ ( s X. t ) = ( s X. t ) ) -> E. u e. ran I E. v e. ran I ( s X. t ) = ( u X. v ) ) |
| 50 |
44 49
|
mp3an3 |
|- ( ( s e. ran I /\ t e. ran I ) -> E. u e. ran I E. v e. ran I ( s X. t ) = ( u X. v ) ) |
| 51 |
|
vex |
|- u e. _V |
| 52 |
|
vex |
|- v e. _V |
| 53 |
51 52
|
xpex |
|- ( u X. v ) e. _V |
| 54 |
3 53
|
elrnmpo |
|- ( ( s X. t ) e. ran R <-> E. u e. ran I E. v e. ran I ( s X. t ) = ( u X. v ) ) |
| 55 |
50 54
|
sylibr |
|- ( ( s e. ran I /\ t e. ran I ) -> ( s X. t ) e. ran R ) |
| 56 |
55
|
ad2antrl |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( s X. t ) e. ran R ) |
| 57 |
|
xpss |
|- ( RR X. RR ) C_ ( _V X. _V ) |
| 58 |
|
simpl1 |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> X e. ( RR X. RR ) ) |
| 59 |
57 58
|
sselid |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> X e. ( _V X. _V ) ) |
| 60 |
|
simprrl |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( ( 1st ` X ) e. s /\ s C_ e ) ) |
| 61 |
60
|
simpld |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( 1st ` X ) e. s ) |
| 62 |
|
simprrr |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( ( 2nd ` X ) e. t /\ t C_ f ) ) |
| 63 |
62
|
simpld |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( 2nd ` X ) e. t ) |
| 64 |
|
elxp7 |
|- ( X e. ( s X. t ) <-> ( X e. ( _V X. _V ) /\ ( ( 1st ` X ) e. s /\ ( 2nd ` X ) e. t ) ) ) |
| 65 |
64
|
biimpri |
|- ( ( X e. ( _V X. _V ) /\ ( ( 1st ` X ) e. s /\ ( 2nd ` X ) e. t ) ) -> X e. ( s X. t ) ) |
| 66 |
59 61 63 65
|
syl12anc |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> X e. ( s X. t ) ) |
| 67 |
60
|
simprd |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> s C_ e ) |
| 68 |
62
|
simprd |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> t C_ f ) |
| 69 |
|
xpss12 |
|- ( ( s C_ e /\ t C_ f ) -> ( s X. t ) C_ ( e X. f ) ) |
| 70 |
67 68 69
|
syl2anc |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( s X. t ) C_ ( e X. f ) ) |
| 71 |
|
simpl2 |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> A = ( e X. f ) ) |
| 72 |
70 71
|
sseqtrrd |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> ( s X. t ) C_ A ) |
| 73 |
|
eleq2 |
|- ( b = ( s X. t ) -> ( X e. b <-> X e. ( s X. t ) ) ) |
| 74 |
|
sseq1 |
|- ( b = ( s X. t ) -> ( b C_ A <-> ( s X. t ) C_ A ) ) |
| 75 |
73 74
|
anbi12d |
|- ( b = ( s X. t ) -> ( ( X e. b /\ b C_ A ) <-> ( X e. ( s X. t ) /\ ( s X. t ) C_ A ) ) ) |
| 76 |
75
|
rspcev |
|- ( ( ( s X. t ) e. ran R /\ ( X e. ( s X. t ) /\ ( s X. t ) C_ A ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 77 |
56 66 72 76
|
syl12anc |
|- ( ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) /\ ( ( s e. ran I /\ t e. ran I ) /\ ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 78 |
77
|
exp32 |
|- ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) -> ( ( s e. ran I /\ t e. ran I ) -> ( ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) ) ) |
| 79 |
78
|
rexlimdvv |
|- ( ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) -> ( E. s e. ran I E. t e. ran I ( ( ( 1st ` X ) e. s /\ s C_ e ) /\ ( ( 2nd ` X ) e. t /\ t C_ f ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) ) |
| 80 |
23 43 79
|
sylc |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( X e. ( RR X. RR ) /\ A = ( e X. f ) /\ X e. ( e X. f ) ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 81 |
22 80
|
sylan2 |
|- ( ( ( e e. ran (,) /\ f e. ran (,) ) /\ ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 82 |
81
|
ex |
|- ( ( e e. ran (,) /\ f e. ran (,) ) -> ( ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) ) |
| 83 |
82
|
rexlimivv |
|- ( E. e e. ran (,) E. f e. ran (,) ( A = ( e X. f ) /\ ( X e. ( RR X. RR ) /\ X e. A ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 84 |
15 17 83
|
3syl |
|- ( ( X e. ( RR X. RR ) /\ A e. B /\ X e. A ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |