Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
3 |
|
eqid |
|- ( |_ ` ( 1 - ( 2 logb d ) ) ) = ( |_ ` ( 1 - ( 2 logb d ) ) ) |
4 |
1 2 3
|
dya2icoseg |
|- ( ( X e. RR /\ d e. RR+ ) -> E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) ) |
5 |
4
|
ralrimiva |
|- ( X e. RR -> A. d e. RR+ E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> A. d e. RR+ E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) ) |
7 |
|
simp3 |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> X e. E ) |
8 |
|
iooex |
|- (,) e. _V |
9 |
8
|
rnex |
|- ran (,) e. _V |
10 |
|
bastg |
|- ( ran (,) e. _V -> ran (,) C_ ( topGen ` ran (,) ) ) |
11 |
9 10
|
ax-mp |
|- ran (,) C_ ( topGen ` ran (,) ) |
12 |
|
simp2 |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E e. ran (,) ) |
13 |
11 12
|
sselid |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E e. ( topGen ` ran (,) ) ) |
14 |
13 1
|
eleqtrrdi |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E e. J ) |
15 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
16 |
15
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
17 |
|
recms |
|- RRfld e. CMetSp |
18 |
|
cmsms |
|- ( RRfld e. CMetSp -> RRfld e. MetSp ) |
19 |
|
msxms |
|- ( RRfld e. MetSp -> RRfld e. *MetSp ) |
20 |
17 18 19
|
mp2b |
|- RRfld e. *MetSp |
21 |
|
retopn |
|- ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) |
22 |
1 21
|
eqtri |
|- J = ( TopOpen ` RRfld ) |
23 |
|
rebase |
|- RR = ( Base ` RRfld ) |
24 |
|
reds |
|- ( abs o. - ) = ( dist ` RRfld ) |
25 |
24
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( RR X. RR ) ) |
26 |
22 23 25
|
xmstopn |
|- ( RRfld e. *MetSp -> J = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
27 |
20 26
|
ax-mp |
|- J = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
28 |
27
|
elmopn2 |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) -> ( E e. J <-> ( E C_ RR /\ A. x e. E E. d e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) ) ) |
29 |
16 28
|
ax-mp |
|- ( E e. J <-> ( E C_ RR /\ A. x e. E E. d e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) ) |
30 |
29
|
simprbi |
|- ( E e. J -> A. x e. E E. d e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) |
31 |
14 30
|
syl |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> A. x e. E E. d e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) |
32 |
|
oveq1 |
|- ( x = X -> ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) = ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) ) |
33 |
32
|
sseq1d |
|- ( x = X -> ( ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E <-> ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) ) |
34 |
33
|
rexbidv |
|- ( x = X -> ( E. d e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E <-> E. d e. RR+ ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) ) |
35 |
34
|
rspcva |
|- ( ( X e. E /\ A. x e. E E. d e. RR+ ( x ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) -> E. d e. RR+ ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) |
36 |
7 31 35
|
syl2anc |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E. d e. RR+ ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E ) |
37 |
|
rpre |
|- ( d e. RR+ -> d e. RR ) |
38 |
15
|
bl2ioo |
|- ( ( X e. RR /\ d e. RR ) -> ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) = ( ( X - d ) (,) ( X + d ) ) ) |
39 |
38
|
sseq1d |
|- ( ( X e. RR /\ d e. RR ) -> ( ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E <-> ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
40 |
37 39
|
sylan2 |
|- ( ( X e. RR /\ d e. RR+ ) -> ( ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E <-> ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
41 |
40
|
rexbidva |
|- ( X e. RR -> ( E. d e. RR+ ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E <-> E. d e. RR+ ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
42 |
41
|
3ad2ant1 |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> ( E. d e. RR+ ( X ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) d ) C_ E <-> E. d e. RR+ ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
43 |
36 42
|
mpbid |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E. d e. RR+ ( ( X - d ) (,) ( X + d ) ) C_ E ) |
44 |
|
r19.29 |
|- ( ( A. d e. RR+ E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ E. d e. RR+ ( ( X - d ) (,) ( X + d ) ) C_ E ) -> E. d e. RR+ ( E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
45 |
6 43 44
|
syl2anc |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E. d e. RR+ ( E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
46 |
|
r19.41v |
|- ( E. b e. ran I ( ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) <-> ( E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) ) |
47 |
|
sstr |
|- ( ( b C_ ( ( X - d ) (,) ( X + d ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) -> b C_ E ) |
48 |
47
|
anim2i |
|- ( ( X e. b /\ ( b C_ ( ( X - d ) (,) ( X + d ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) ) -> ( X e. b /\ b C_ E ) ) |
49 |
48
|
anassrs |
|- ( ( ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) -> ( X e. b /\ b C_ E ) ) |
50 |
49
|
reximi |
|- ( E. b e. ran I ( ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) -> E. b e. ran I ( X e. b /\ b C_ E ) ) |
51 |
46 50
|
sylbir |
|- ( ( E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) -> E. b e. ran I ( X e. b /\ b C_ E ) ) |
52 |
51
|
rexlimivw |
|- ( E. d e. RR+ ( E. b e. ran I ( X e. b /\ b C_ ( ( X - d ) (,) ( X + d ) ) ) /\ ( ( X - d ) (,) ( X + d ) ) C_ E ) -> E. b e. ran I ( X e. b /\ b C_ E ) ) |
53 |
45 52
|
syl |
|- ( ( X e. RR /\ E e. ran (,) /\ X e. E ) -> E. b e. ran I ( X e. b /\ b C_ E ) ) |