Metamath Proof Explorer


Theorem dya2icoseg2

Description: For any point and any open interval of RR containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
Assertion dya2icoseg2 X E ran . X E b ran I X b b E

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 eqid 1 log 2 d = 1 log 2 d
4 1 2 3 dya2icoseg X d + b ran I X b b X d X + d
5 4 ralrimiva X d + b ran I X b b X d X + d
6 5 3ad2ant1 X E ran . X E d + b ran I X b b X d X + d
7 simp3 X E ran . X E X E
8 iooex . V
9 8 rnex ran . V
10 bastg ran . V ran . topGen ran .
11 9 10 ax-mp ran . topGen ran .
12 simp2 X E ran . X E E ran .
13 11 12 sselid X E ran . X E E topGen ran .
14 13 1 eleqtrrdi X E ran . X E E J
15 eqid abs 2 = abs 2
16 15 rexmet abs 2 ∞Met
17 recms fld CMetSp
18 cmsms fld CMetSp fld MetSp
19 msxms fld MetSp fld ∞MetSp
20 17 18 19 mp2b fld ∞MetSp
21 retopn topGen ran . = TopOpen fld
22 1 21 eqtri J = TopOpen fld
23 rebase = Base fld
24 reds abs = dist fld
25 24 reseq1i abs 2 = dist fld 2
26 22 23 25 xmstopn fld ∞MetSp J = MetOpen abs 2
27 20 26 ax-mp J = MetOpen abs 2
28 27 elmopn2 abs 2 ∞Met E J E x E d + x ball abs 2 d E
29 16 28 ax-mp E J E x E d + x ball abs 2 d E
30 29 simprbi E J x E d + x ball abs 2 d E
31 14 30 syl X E ran . X E x E d + x ball abs 2 d E
32 oveq1 x = X x ball abs 2 d = X ball abs 2 d
33 32 sseq1d x = X x ball abs 2 d E X ball abs 2 d E
34 33 rexbidv x = X d + x ball abs 2 d E d + X ball abs 2 d E
35 34 rspcva X E x E d + x ball abs 2 d E d + X ball abs 2 d E
36 7 31 35 syl2anc X E ran . X E d + X ball abs 2 d E
37 rpre d + d
38 15 bl2ioo X d X ball abs 2 d = X d X + d
39 38 sseq1d X d X ball abs 2 d E X d X + d E
40 37 39 sylan2 X d + X ball abs 2 d E X d X + d E
41 40 rexbidva X d + X ball abs 2 d E d + X d X + d E
42 41 3ad2ant1 X E ran . X E d + X ball abs 2 d E d + X d X + d E
43 36 42 mpbid X E ran . X E d + X d X + d E
44 r19.29 d + b ran I X b b X d X + d d + X d X + d E d + b ran I X b b X d X + d X d X + d E
45 6 43 44 syl2anc X E ran . X E d + b ran I X b b X d X + d X d X + d E
46 r19.41v b ran I X b b X d X + d X d X + d E b ran I X b b X d X + d X d X + d E
47 sstr b X d X + d X d X + d E b E
48 47 anim2i X b b X d X + d X d X + d E X b b E
49 48 anassrs X b b X d X + d X d X + d E X b b E
50 49 reximi b ran I X b b X d X + d X d X + d E b ran I X b b E
51 46 50 sylbir b ran I X b b X d X + d X d X + d E b ran I X b b E
52 51 rexlimivw d + b ran I X b b X d X + d X d X + d E b ran I X b b E
53 45 52 syl X E ran . X E b ran I X b b E