Metamath Proof Explorer


Theorem dya2icoseg

Description: For any point and any closed-below, open-above interval of RR centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
dya2icoseg.1 N = 1 log 2 D
Assertion dya2icoseg X D + b ran I X b b X D X + D

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 dya2icoseg.1 N = 1 log 2 D
4 ovex x 2 n x + 1 2 n V
5 2 4 fnmpoi I Fn ×
6 5 a1i X D + I Fn ×
7 simpl X D + X
8 2rp 2 +
9 1red D + 1
10 2z 2
11 uzid 2 2 2
12 10 11 ax-mp 2 2
13 relogbzcl 2 2 D + log 2 D
14 12 13 mpan D + log 2 D
15 9 14 resubcld D + 1 log 2 D
16 15 flcld D + 1 log 2 D
17 3 16 eqeltrid D + N
18 rpexpcl 2 + N 2 N +
19 18 rpred 2 + N 2 N
20 8 17 19 sylancr D + 2 N
21 20 adantl X D + 2 N
22 7 21 remulcld X D + X 2 N
23 22 flcld X D + X 2 N
24 17 adantl X D + N
25 fnovrn I Fn × X 2 N N X 2 N I N ran I
26 6 23 24 25 syl3anc X D + X 2 N I N ran I
27 23 zred X D + X 2 N
28 8 24 18 sylancr X D + 2 N +
29 fllelt X 2 N X 2 N X 2 N X 2 N < X 2 N + 1
30 22 29 syl X D + X 2 N X 2 N X 2 N < X 2 N + 1
31 30 simpld X D + X 2 N X 2 N
32 27 22 28 31 lediv1dd X D + X 2 N 2 N X 2 N 2 N
33 7 recnd X D + X
34 21 recnd X D + 2 N
35 2cnd X D + 2
36 2ne0 2 0
37 36 a1i X D + 2 0
38 35 37 24 expne0d X D + 2 N 0
39 33 34 38 divcan4d X D + X 2 N 2 N = X
40 32 39 breqtrd X D + X 2 N 2 N X
41 1red X D + 1
42 27 41 readdcld X D + X 2 N + 1
43 30 simprd X D + X 2 N < X 2 N + 1
44 22 42 28 43 ltdiv1dd X D + X 2 N 2 N < X 2 N + 1 2 N
45 39 44 eqbrtrrd X D + X < X 2 N + 1 2 N
46 27 21 38 redivcld X D + X 2 N 2 N
47 42 21 38 redivcld X D + X 2 N + 1 2 N
48 47 rexrd X D + X 2 N + 1 2 N *
49 elico2 X 2 N 2 N X 2 N + 1 2 N * X X 2 N 2 N X 2 N + 1 2 N X X 2 N 2 N X X < X 2 N + 1 2 N
50 46 48 49 syl2anc X D + X X 2 N 2 N X 2 N + 1 2 N X X 2 N 2 N X X < X 2 N + 1 2 N
51 7 40 45 50 mpbir3and X D + X X 2 N 2 N X 2 N + 1 2 N
52 1 2 dya2iocival N X 2 N X 2 N I N = X 2 N 2 N X 2 N + 1 2 N
53 24 23 52 syl2anc X D + X 2 N I N = X 2 N 2 N X 2 N + 1 2 N
54 51 53 eleqtrrd X D + X X 2 N I N
55 simpr X D + D +
56 55 rpred X D + D
57 7 56 resubcld X D + X D
58 57 rexrd X D + X D *
59 7 56 readdcld X D + X + D
60 59 rexrd X D + X + D *
61 21 38 rereccld X D + 1 2 N
62 7 61 resubcld X D + X 1 2 N
63 3 oveq2i 2 N = 2 1 log 2 D
64 63 oveq2i 1 2 N = 1 2 1 log 2 D
65 dya2ub D + 1 2 1 log 2 D < D
66 65 adantl X D + 1 2 1 log 2 D < D
67 64 66 eqbrtrid X D + 1 2 N < D
68 61 56 7 67 ltsub2dd X D + X D < X 1 2 N
69 33 34 mulcld X D + X 2 N
70 1cnd X D + 1
71 69 70 34 38 divsubdird X D + X 2 N 1 2 N = X 2 N 2 N 1 2 N
72 39 oveq1d X D + X 2 N 2 N 1 2 N = X 1 2 N
73 71 72 eqtrd X D + X 2 N 1 2 N = X 1 2 N
74 22 41 resubcld X D + X 2 N 1
75 22 42 41 43 ltsub1dd X D + X 2 N 1 < X 2 N + 1 - 1
76 27 recnd X D + X 2 N
77 76 70 pncand X D + X 2 N + 1 - 1 = X 2 N
78 75 77 breqtrd X D + X 2 N 1 < X 2 N
79 74 27 78 ltled X D + X 2 N 1 X 2 N
80 74 27 28 79 lediv1dd X D + X 2 N 1 2 N X 2 N 2 N
81 73 80 eqbrtrrd X D + X 1 2 N X 2 N 2 N
82 57 62 46 68 81 ltletrd X D + X D < X 2 N 2 N
83 7 61 readdcld X D + X + 1 2 N
84 22 41 readdcld X D + X 2 N + 1
85 27 22 41 31 leadd1dd X D + X 2 N + 1 X 2 N + 1
86 42 84 28 85 lediv1dd X D + X 2 N + 1 2 N X 2 N + 1 2 N
87 69 70 34 38 divdird X D + X 2 N + 1 2 N = X 2 N 2 N + 1 2 N
88 39 oveq1d X D + X 2 N 2 N + 1 2 N = X + 1 2 N
89 87 88 eqtrd X D + X 2 N + 1 2 N = X + 1 2 N
90 86 89 breqtrd X D + X 2 N + 1 2 N X + 1 2 N
91 61 56 7 67 ltadd2dd X D + X + 1 2 N < X + D
92 47 83 59 90 91 lelttrd X D + X 2 N + 1 2 N < X + D
93 47 59 92 ltled X D + X 2 N + 1 2 N X + D
94 icossioo X D * X + D * X D < X 2 N 2 N X 2 N + 1 2 N X + D X 2 N 2 N X 2 N + 1 2 N X D X + D
95 58 60 82 93 94 syl22anc X D + X 2 N 2 N X 2 N + 1 2 N X D X + D
96 53 95 eqsstrd X D + X 2 N I N X D X + D
97 eleq2 b = X 2 N I N X b X X 2 N I N
98 sseq1 b = X 2 N I N b X D X + D X 2 N I N X D X + D
99 97 98 anbi12d b = X 2 N I N X b b X D X + D X X 2 N I N X 2 N I N X D X + D
100 99 rspcev X 2 N I N ran I X X 2 N I N X 2 N I N X D X + D b ran I X b b X D X + D
101 26 54 96 100 syl12anc X D + b ran I X b b X D X + D