Metamath Proof Explorer


Theorem dya2iocival

Description: The function I returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl . (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
Assertion dya2iocival NXXIN=X2NX+12N

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 oveq1 u=Xu2m=X2m
4 oveq1 u=Xu+1=X+1
5 4 oveq1d u=Xu+12m=X+12m
6 3 5 oveq12d u=Xu2mu+12m=X2mX+12m
7 oveq2 m=N2m=2N
8 7 oveq2d m=NX2m=X2N
9 7 oveq2d m=NX+12m=X+12N
10 8 9 oveq12d m=NX2mX+12m=X2NX+12N
11 oveq1 u=xu2m=x2m
12 oveq1 u=xu+1=x+1
13 12 oveq1d u=xu+12m=x+12m
14 11 13 oveq12d u=xu2mu+12m=x2mx+12m
15 oveq2 m=n2m=2n
16 15 oveq2d m=nx2m=x2n
17 15 oveq2d m=nx+12m=x+12n
18 16 17 oveq12d m=nx2mx+12m=x2nx+12n
19 14 18 cbvmpov u,mu2mu+12m=x,nx2nx+12n
20 2 19 eqtr4i I=u,mu2mu+12m
21 ovex X2NX+12NV
22 6 10 20 21 ovmpo XNXIN=X2NX+12N
23 22 ancoms NXXIN=X2NX+12N