Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
3 |
|
oveq1 |
|- ( u = X -> ( u / ( 2 ^ m ) ) = ( X / ( 2 ^ m ) ) ) |
4 |
|
oveq1 |
|- ( u = X -> ( u + 1 ) = ( X + 1 ) ) |
5 |
4
|
oveq1d |
|- ( u = X -> ( ( u + 1 ) / ( 2 ^ m ) ) = ( ( X + 1 ) / ( 2 ^ m ) ) ) |
6 |
3 5
|
oveq12d |
|- ( u = X -> ( ( u / ( 2 ^ m ) ) [,) ( ( u + 1 ) / ( 2 ^ m ) ) ) = ( ( X / ( 2 ^ m ) ) [,) ( ( X + 1 ) / ( 2 ^ m ) ) ) ) |
7 |
|
oveq2 |
|- ( m = N -> ( 2 ^ m ) = ( 2 ^ N ) ) |
8 |
7
|
oveq2d |
|- ( m = N -> ( X / ( 2 ^ m ) ) = ( X / ( 2 ^ N ) ) ) |
9 |
7
|
oveq2d |
|- ( m = N -> ( ( X + 1 ) / ( 2 ^ m ) ) = ( ( X + 1 ) / ( 2 ^ N ) ) ) |
10 |
8 9
|
oveq12d |
|- ( m = N -> ( ( X / ( 2 ^ m ) ) [,) ( ( X + 1 ) / ( 2 ^ m ) ) ) = ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) ) |
11 |
|
oveq1 |
|- ( u = x -> ( u / ( 2 ^ m ) ) = ( x / ( 2 ^ m ) ) ) |
12 |
|
oveq1 |
|- ( u = x -> ( u + 1 ) = ( x + 1 ) ) |
13 |
12
|
oveq1d |
|- ( u = x -> ( ( u + 1 ) / ( 2 ^ m ) ) = ( ( x + 1 ) / ( 2 ^ m ) ) ) |
14 |
11 13
|
oveq12d |
|- ( u = x -> ( ( u / ( 2 ^ m ) ) [,) ( ( u + 1 ) / ( 2 ^ m ) ) ) = ( ( x / ( 2 ^ m ) ) [,) ( ( x + 1 ) / ( 2 ^ m ) ) ) ) |
15 |
|
oveq2 |
|- ( m = n -> ( 2 ^ m ) = ( 2 ^ n ) ) |
16 |
15
|
oveq2d |
|- ( m = n -> ( x / ( 2 ^ m ) ) = ( x / ( 2 ^ n ) ) ) |
17 |
15
|
oveq2d |
|- ( m = n -> ( ( x + 1 ) / ( 2 ^ m ) ) = ( ( x + 1 ) / ( 2 ^ n ) ) ) |
18 |
16 17
|
oveq12d |
|- ( m = n -> ( ( x / ( 2 ^ m ) ) [,) ( ( x + 1 ) / ( 2 ^ m ) ) ) = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
19 |
14 18
|
cbvmpov |
|- ( u e. ZZ , m e. ZZ |-> ( ( u / ( 2 ^ m ) ) [,) ( ( u + 1 ) / ( 2 ^ m ) ) ) ) = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
20 |
2 19
|
eqtr4i |
|- I = ( u e. ZZ , m e. ZZ |-> ( ( u / ( 2 ^ m ) ) [,) ( ( u + 1 ) / ( 2 ^ m ) ) ) ) |
21 |
|
ovex |
|- ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) e. _V |
22 |
6 10 20 21
|
ovmpo |
|- ( ( X e. ZZ /\ N e. ZZ ) -> ( X I N ) = ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) ) |
23 |
22
|
ancoms |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( X I N ) = ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) ) |