Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
2 |
|
dyadmbl.2 |
|- G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } |
3 |
|
dyadmbl.3 |
|- ( ph -> A C_ ran F ) |
4 |
1 2 3
|
dyadmbllem |
|- ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) |
5 |
|
isfinite |
|- ( G e. Fin <-> G ~< _om ) |
6 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
7 |
|
ffun |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
8 |
|
funiunfv |
|- ( Fun [,] -> U_ n e. G ( [,] ` n ) = U. ( [,] " G ) ) |
9 |
6 7 8
|
mp2b |
|- U_ n e. G ( [,] ` n ) = U. ( [,] " G ) |
10 |
|
simpr |
|- ( ( ph /\ G e. Fin ) -> G e. Fin ) |
11 |
2
|
ssrab3 |
|- G C_ A |
12 |
11 3
|
sstrid |
|- ( ph -> G C_ ran F ) |
13 |
1
|
dyadf |
|- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
14 |
|
frn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
15 |
13 14
|
ax-mp |
|- ran F C_ ( <_ i^i ( RR X. RR ) ) |
16 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
17 |
15 16
|
sstri |
|- ran F C_ ( RR X. RR ) |
18 |
12 17
|
sstrdi |
|- ( ph -> G C_ ( RR X. RR ) ) |
19 |
18
|
adantr |
|- ( ( ph /\ G e. Fin ) -> G C_ ( RR X. RR ) ) |
20 |
19
|
sselda |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> n e. ( RR X. RR ) ) |
21 |
|
1st2nd2 |
|- ( n e. ( RR X. RR ) -> n = <. ( 1st ` n ) , ( 2nd ` n ) >. ) |
22 |
20 21
|
syl |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> n = <. ( 1st ` n ) , ( 2nd ` n ) >. ) |
23 |
22
|
fveq2d |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) = ( [,] ` <. ( 1st ` n ) , ( 2nd ` n ) >. ) ) |
24 |
|
df-ov |
|- ( ( 1st ` n ) [,] ( 2nd ` n ) ) = ( [,] ` <. ( 1st ` n ) , ( 2nd ` n ) >. ) |
25 |
23 24
|
eqtr4di |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) = ( ( 1st ` n ) [,] ( 2nd ` n ) ) ) |
26 |
|
xp1st |
|- ( n e. ( RR X. RR ) -> ( 1st ` n ) e. RR ) |
27 |
20 26
|
syl |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( 1st ` n ) e. RR ) |
28 |
|
xp2nd |
|- ( n e. ( RR X. RR ) -> ( 2nd ` n ) e. RR ) |
29 |
20 28
|
syl |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( 2nd ` n ) e. RR ) |
30 |
|
iccmbl |
|- ( ( ( 1st ` n ) e. RR /\ ( 2nd ` n ) e. RR ) -> ( ( 1st ` n ) [,] ( 2nd ` n ) ) e. dom vol ) |
31 |
27 29 30
|
syl2anc |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( ( 1st ` n ) [,] ( 2nd ` n ) ) e. dom vol ) |
32 |
25 31
|
eqeltrd |
|- ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) e. dom vol ) |
33 |
32
|
ralrimiva |
|- ( ( ph /\ G e. Fin ) -> A. n e. G ( [,] ` n ) e. dom vol ) |
34 |
|
finiunmbl |
|- ( ( G e. Fin /\ A. n e. G ( [,] ` n ) e. dom vol ) -> U_ n e. G ( [,] ` n ) e. dom vol ) |
35 |
10 33 34
|
syl2anc |
|- ( ( ph /\ G e. Fin ) -> U_ n e. G ( [,] ` n ) e. dom vol ) |
36 |
9 35
|
eqeltrrid |
|- ( ( ph /\ G e. Fin ) -> U. ( [,] " G ) e. dom vol ) |
37 |
5 36
|
sylan2br |
|- ( ( ph /\ G ~< _om ) -> U. ( [,] " G ) e. dom vol ) |
38 |
|
rnco2 |
|- ran ( [,] o. f ) = ( [,] " ran f ) |
39 |
|
f1ofo |
|- ( f : NN -1-1-onto-> G -> f : NN -onto-> G ) |
40 |
39
|
adantl |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN -onto-> G ) |
41 |
|
forn |
|- ( f : NN -onto-> G -> ran f = G ) |
42 |
40 41
|
syl |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> ran f = G ) |
43 |
42
|
imaeq2d |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> ( [,] " ran f ) = ( [,] " G ) ) |
44 |
38 43
|
eqtrid |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> ran ( [,] o. f ) = ( [,] " G ) ) |
45 |
44
|
unieqd |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ran ( [,] o. f ) = U. ( [,] " G ) ) |
46 |
|
f1of |
|- ( f : NN -1-1-onto-> G -> f : NN --> G ) |
47 |
12 15
|
sstrdi |
|- ( ph -> G C_ ( <_ i^i ( RR X. RR ) ) ) |
48 |
|
fss |
|- ( ( f : NN --> G /\ G C_ ( <_ i^i ( RR X. RR ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
49 |
46 47 48
|
syl2anr |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
50 |
|
fss |
|- ( ( f : NN --> G /\ G C_ ran F ) -> f : NN --> ran F ) |
51 |
46 12 50
|
syl2anr |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> ran F ) |
52 |
|
simpl |
|- ( ( a e. NN /\ b e. NN ) -> a e. NN ) |
53 |
|
ffvelrn |
|- ( ( f : NN --> ran F /\ a e. NN ) -> ( f ` a ) e. ran F ) |
54 |
51 52 53
|
syl2an |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. ran F ) |
55 |
|
simpr |
|- ( ( a e. NN /\ b e. NN ) -> b e. NN ) |
56 |
|
ffvelrn |
|- ( ( f : NN --> ran F /\ b e. NN ) -> ( f ` b ) e. ran F ) |
57 |
51 55 56
|
syl2an |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. ran F ) |
58 |
1
|
dyaddisj |
|- ( ( ( f ` a ) e. ran F /\ ( f ` b ) e. ran F ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
59 |
54 57 58
|
syl2anc |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
60 |
|
fveq2 |
|- ( w = ( f ` b ) -> ( [,] ` w ) = ( [,] ` ( f ` b ) ) ) |
61 |
60
|
sseq2d |
|- ( w = ( f ` b ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) ) ) |
62 |
|
eqeq2 |
|- ( w = ( f ` b ) -> ( ( f ` a ) = w <-> ( f ` a ) = ( f ` b ) ) ) |
63 |
61 62
|
imbi12d |
|- ( w = ( f ` b ) -> ( ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) <-> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( f ` a ) = ( f ` b ) ) ) ) |
64 |
46
|
adantl |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> G ) |
65 |
|
ffvelrn |
|- ( ( f : NN --> G /\ a e. NN ) -> ( f ` a ) e. G ) |
66 |
64 52 65
|
syl2an |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. G ) |
67 |
|
fveq2 |
|- ( z = ( f ` a ) -> ( [,] ` z ) = ( [,] ` ( f ` a ) ) ) |
68 |
67
|
sseq1d |
|- ( z = ( f ` a ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) ) ) |
69 |
|
eqeq1 |
|- ( z = ( f ` a ) -> ( z = w <-> ( f ` a ) = w ) ) |
70 |
68 69
|
imbi12d |
|- ( z = ( f ` a ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) |
71 |
70
|
ralbidv |
|- ( z = ( f ` a ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) |
72 |
71 2
|
elrab2 |
|- ( ( f ` a ) e. G <-> ( ( f ` a ) e. A /\ A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) |
73 |
72
|
simprbi |
|- ( ( f ` a ) e. G -> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) |
74 |
66 73
|
syl |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) |
75 |
|
ffvelrn |
|- ( ( f : NN --> G /\ b e. NN ) -> ( f ` b ) e. G ) |
76 |
64 55 75
|
syl2an |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. G ) |
77 |
11 76
|
sselid |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. A ) |
78 |
63 74 77
|
rspcdva |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( f ` a ) = ( f ` b ) ) ) |
79 |
|
f1of1 |
|- ( f : NN -1-1-onto-> G -> f : NN -1-1-> G ) |
80 |
79
|
adantl |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN -1-1-> G ) |
81 |
|
f1fveq |
|- ( ( f : NN -1-1-> G /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) <-> a = b ) ) |
82 |
80 81
|
sylan |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) <-> a = b ) ) |
83 |
|
orc |
|- ( a = b -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
84 |
82 83
|
syl6bi |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
85 |
78 84
|
syld |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
86 |
|
fveq2 |
|- ( w = ( f ` a ) -> ( [,] ` w ) = ( [,] ` ( f ` a ) ) ) |
87 |
86
|
sseq2d |
|- ( w = ( f ` a ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) ) ) |
88 |
|
eqeq2 |
|- ( w = ( f ` a ) -> ( ( f ` b ) = w <-> ( f ` b ) = ( f ` a ) ) ) |
89 |
|
eqcom |
|- ( ( f ` b ) = ( f ` a ) <-> ( f ` a ) = ( f ` b ) ) |
90 |
88 89
|
bitrdi |
|- ( w = ( f ` a ) -> ( ( f ` b ) = w <-> ( f ` a ) = ( f ` b ) ) ) |
91 |
87 90
|
imbi12d |
|- ( w = ( f ` a ) -> ( ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) <-> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( f ` a ) = ( f ` b ) ) ) ) |
92 |
|
fveq2 |
|- ( z = ( f ` b ) -> ( [,] ` z ) = ( [,] ` ( f ` b ) ) ) |
93 |
92
|
sseq1d |
|- ( z = ( f ` b ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) ) ) |
94 |
|
eqeq1 |
|- ( z = ( f ` b ) -> ( z = w <-> ( f ` b ) = w ) ) |
95 |
93 94
|
imbi12d |
|- ( z = ( f ` b ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) |
96 |
95
|
ralbidv |
|- ( z = ( f ` b ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) |
97 |
96 2
|
elrab2 |
|- ( ( f ` b ) e. G <-> ( ( f ` b ) e. A /\ A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) |
98 |
97
|
simprbi |
|- ( ( f ` b ) e. G -> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) |
99 |
76 98
|
syl |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) |
100 |
11 66
|
sselid |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. A ) |
101 |
91 99 100
|
rspcdva |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( f ` a ) = ( f ` b ) ) ) |
102 |
101 84
|
syld |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
103 |
|
olc |
|- ( ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
104 |
103
|
a1i |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
105 |
85 102 104
|
3jaod |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) |
106 |
59 105
|
mpd |
|- ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
107 |
106
|
ralrimivva |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> A. a e. NN A. b e. NN ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
108 |
|
2fveq3 |
|- ( a = b -> ( (,) ` ( f ` a ) ) = ( (,) ` ( f ` b ) ) ) |
109 |
108
|
disjor |
|- ( Disj_ a e. NN ( (,) ` ( f ` a ) ) <-> A. a e. NN A. b e. NN ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) |
110 |
107 109
|
sylibr |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> Disj_ a e. NN ( (,) ` ( f ` a ) ) ) |
111 |
|
eqid |
|- seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) |
112 |
49 110 111
|
uniiccmbl |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ran ( [,] o. f ) e. dom vol ) |
113 |
45 112
|
eqeltrrd |
|- ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ( [,] " G ) e. dom vol ) |
114 |
113
|
ex |
|- ( ph -> ( f : NN -1-1-onto-> G -> U. ( [,] " G ) e. dom vol ) ) |
115 |
114
|
exlimdv |
|- ( ph -> ( E. f f : NN -1-1-onto-> G -> U. ( [,] " G ) e. dom vol ) ) |
116 |
|
nnenom |
|- NN ~~ _om |
117 |
|
ensym |
|- ( G ~~ _om -> _om ~~ G ) |
118 |
|
entr |
|- ( ( NN ~~ _om /\ _om ~~ G ) -> NN ~~ G ) |
119 |
116 117 118
|
sylancr |
|- ( G ~~ _om -> NN ~~ G ) |
120 |
|
bren |
|- ( NN ~~ G <-> E. f f : NN -1-1-onto-> G ) |
121 |
119 120
|
sylib |
|- ( G ~~ _om -> E. f f : NN -1-1-onto-> G ) |
122 |
115 121
|
impel |
|- ( ( ph /\ G ~~ _om ) -> U. ( [,] " G ) e. dom vol ) |
123 |
|
reex |
|- RR e. _V |
124 |
123 123
|
xpex |
|- ( RR X. RR ) e. _V |
125 |
124
|
inex2 |
|- ( <_ i^i ( RR X. RR ) ) e. _V |
126 |
125 15
|
ssexi |
|- ran F e. _V |
127 |
|
ssdomg |
|- ( ran F e. _V -> ( G C_ ran F -> G ~<_ ran F ) ) |
128 |
126 12 127
|
mpsyl |
|- ( ph -> G ~<_ ran F ) |
129 |
|
omelon |
|- _om e. On |
130 |
|
znnen |
|- ZZ ~~ NN |
131 |
130 116
|
entri |
|- ZZ ~~ _om |
132 |
|
nn0ennn |
|- NN0 ~~ NN |
133 |
132 116
|
entri |
|- NN0 ~~ _om |
134 |
|
xpen |
|- ( ( ZZ ~~ _om /\ NN0 ~~ _om ) -> ( ZZ X. NN0 ) ~~ ( _om X. _om ) ) |
135 |
131 133 134
|
mp2an |
|- ( ZZ X. NN0 ) ~~ ( _om X. _om ) |
136 |
|
xpomen |
|- ( _om X. _om ) ~~ _om |
137 |
135 136
|
entri |
|- ( ZZ X. NN0 ) ~~ _om |
138 |
137
|
ensymi |
|- _om ~~ ( ZZ X. NN0 ) |
139 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ ( ZZ X. NN0 ) ) -> ( ZZ X. NN0 ) e. dom card ) |
140 |
129 138 139
|
mp2an |
|- ( ZZ X. NN0 ) e. dom card |
141 |
|
ffn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
142 |
13 141
|
ax-mp |
|- F Fn ( ZZ X. NN0 ) |
143 |
|
dffn4 |
|- ( F Fn ( ZZ X. NN0 ) <-> F : ( ZZ X. NN0 ) -onto-> ran F ) |
144 |
142 143
|
mpbi |
|- F : ( ZZ X. NN0 ) -onto-> ran F |
145 |
|
fodomnum |
|- ( ( ZZ X. NN0 ) e. dom card -> ( F : ( ZZ X. NN0 ) -onto-> ran F -> ran F ~<_ ( ZZ X. NN0 ) ) ) |
146 |
140 144 145
|
mp2 |
|- ran F ~<_ ( ZZ X. NN0 ) |
147 |
|
domentr |
|- ( ( ran F ~<_ ( ZZ X. NN0 ) /\ ( ZZ X. NN0 ) ~~ _om ) -> ran F ~<_ _om ) |
148 |
146 137 147
|
mp2an |
|- ran F ~<_ _om |
149 |
|
domtr |
|- ( ( G ~<_ ran F /\ ran F ~<_ _om ) -> G ~<_ _om ) |
150 |
128 148 149
|
sylancl |
|- ( ph -> G ~<_ _om ) |
151 |
|
brdom2 |
|- ( G ~<_ _om <-> ( G ~< _om \/ G ~~ _om ) ) |
152 |
150 151
|
sylib |
|- ( ph -> ( G ~< _om \/ G ~~ _om ) ) |
153 |
37 122 152
|
mpjaodan |
|- ( ph -> U. ( [,] " G ) e. dom vol ) |
154 |
4 153
|
eqeltrd |
|- ( ph -> U. ( [,] " A ) e. dom vol ) |