| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
| 2 |
|
fveq2 |
|- ( z = w -> ( [,] ` z ) = ( [,] ` w ) ) |
| 3 |
2
|
sseq1d |
|- ( z = w -> ( ( [,] ` z ) C_ A <-> ( [,] ` w ) C_ A ) ) |
| 4 |
3
|
elrab |
|- ( w e. { z e. ran F | ( [,] ` z ) C_ A } <-> ( w e. ran F /\ ( [,] ` w ) C_ A ) ) |
| 5 |
|
simprr |
|- ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) C_ A ) |
| 6 |
|
fvex |
|- ( [,] ` w ) e. _V |
| 7 |
6
|
elpw |
|- ( ( [,] ` w ) e. ~P A <-> ( [,] ` w ) C_ A ) |
| 8 |
5 7
|
sylibr |
|- ( ( A e. ( topGen ` ran (,) ) /\ ( w e. ran F /\ ( [,] ` w ) C_ A ) ) -> ( [,] ` w ) e. ~P A ) |
| 9 |
4 8
|
sylan2b |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. { z e. ran F | ( [,] ` z ) C_ A } ) -> ( [,] ` w ) e. ~P A ) |
| 10 |
9
|
ralrimiva |
|- ( A e. ( topGen ` ran (,) ) -> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) |
| 11 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
| 12 |
|
ffun |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
| 13 |
11 12
|
ax-mp |
|- Fun [,] |
| 14 |
|
ssrab2 |
|- { z e. ran F | ( [,] ` z ) C_ A } C_ ran F |
| 15 |
1
|
dyadf |
|- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
| 16 |
|
frn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
| 17 |
15 16
|
ax-mp |
|- ran F C_ ( <_ i^i ( RR X. RR ) ) |
| 18 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
| 19 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 20 |
18 19
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 21 |
17 20
|
sstri |
|- ran F C_ ( RR* X. RR* ) |
| 22 |
14 21
|
sstri |
|- { z e. ran F | ( [,] ` z ) C_ A } C_ ( RR* X. RR* ) |
| 23 |
11
|
fdmi |
|- dom [,] = ( RR* X. RR* ) |
| 24 |
22 23
|
sseqtrri |
|- { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] |
| 25 |
|
funimass4 |
|- ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) ) |
| 26 |
13 24 25
|
mp2an |
|- ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> A. w e. { z e. ran F | ( [,] ` z ) C_ A } ( [,] ` w ) e. ~P A ) |
| 27 |
10 26
|
sylibr |
|- ( A e. ( topGen ` ran (,) ) -> ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A ) |
| 28 |
|
sspwuni |
|- ( ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ ~P A <-> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) |
| 29 |
27 28
|
sylib |
|- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) C_ A ) |
| 30 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 31 |
30
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 32 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 33 |
30 32
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 34 |
33
|
mopni2 |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) |
| 35 |
31 34
|
mp3an1 |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A ) |
| 36 |
|
elssuni |
|- ( A e. ( topGen ` ran (,) ) -> A C_ U. ( topGen ` ran (,) ) ) |
| 37 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 38 |
36 37
|
sseqtrrdi |
|- ( A e. ( topGen ` ran (,) ) -> A C_ RR ) |
| 39 |
38
|
sselda |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. RR ) |
| 40 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
| 41 |
30
|
bl2ioo |
|- ( ( w e. RR /\ r e. RR ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) |
| 42 |
39 40 41
|
syl2an |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( w - r ) (,) ( w + r ) ) ) |
| 43 |
42
|
sseq1d |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A <-> ( ( w - r ) (,) ( w + r ) ) C_ A ) ) |
| 44 |
|
2re |
|- 2 e. RR |
| 45 |
|
1lt2 |
|- 1 < 2 |
| 46 |
|
expnlbnd |
|- ( ( r e. RR+ /\ 2 e. RR /\ 1 < 2 ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
| 47 |
44 45 46
|
mp3an23 |
|- ( r e. RR+ -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
| 48 |
47
|
ad2antrl |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> E. n e. NN ( 1 / ( 2 ^ n ) ) < r ) |
| 49 |
39
|
ad2antrr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. RR ) |
| 50 |
|
2nn |
|- 2 e. NN |
| 51 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 52 |
51
|
ad2antrl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> n e. NN0 ) |
| 53 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
| 54 |
50 52 53
|
sylancr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. NN ) |
| 55 |
54
|
nnred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. RR ) |
| 56 |
49 55
|
remulcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) e. RR ) |
| 57 |
|
fllelt |
|- ( ( w x. ( 2 ^ n ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) |
| 58 |
56 57
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) /\ ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) ) |
| 59 |
58
|
simpld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) |
| 60 |
|
reflcl |
|- ( ( w x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) |
| 61 |
56 60
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR ) |
| 62 |
54
|
nngt0d |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 0 < ( 2 ^ n ) ) |
| 63 |
|
ledivmul2 |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR /\ w e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) |
| 64 |
61 49 55 62 63
|
syl112anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w <-> ( |_ ` ( w x. ( 2 ^ n ) ) ) <_ ( w x. ( 2 ^ n ) ) ) ) |
| 65 |
59 64
|
mpbird |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w ) |
| 66 |
|
peano2re |
|- ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. RR -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) |
| 67 |
61 66
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR ) |
| 68 |
67 54
|
nndivred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) |
| 69 |
58
|
simprd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) ) |
| 70 |
|
ltmuldiv |
|- ( ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 71 |
49 67 55 62 70
|
syl112anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w x. ( 2 ^ n ) ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 72 |
69 71
|
mpbid |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) |
| 73 |
49 68 72
|
ltled |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) |
| 74 |
61 54
|
nndivred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR ) |
| 75 |
|
elicc2 |
|- ( ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. RR /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) e. RR ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) |
| 76 |
74 68 75
|
syl2anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) <-> ( w e. RR /\ ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <_ w /\ w <_ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) ) |
| 77 |
49 65 73 76
|
mpbir3and |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 78 |
56
|
flcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ ) |
| 79 |
1
|
dyadval |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
| 80 |
78 52 79
|
syl2anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) = <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
| 81 |
80
|
fveq2d |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) ) |
| 82 |
|
df-ov |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) = ( [,] ` <. ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) , ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) >. ) |
| 83 |
81 82
|
eqtr4di |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) ) |
| 84 |
77 83
|
eleqtrrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) |
| 85 |
|
fveq2 |
|- ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( [,] ` z ) = ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) ) |
| 86 |
85
|
sseq1d |
|- ( z = ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) -> ( ( [,] ` z ) C_ A <-> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) ) |
| 87 |
|
ffn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
| 88 |
15 87
|
ax-mp |
|- F Fn ( ZZ X. NN0 ) |
| 89 |
|
fnovrn |
|- ( ( F Fn ( ZZ X. NN0 ) /\ ( |_ ` ( w x. ( 2 ^ n ) ) ) e. ZZ /\ n e. NN0 ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) |
| 90 |
88 78 52 89
|
mp3an2i |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. ran F ) |
| 91 |
|
simplrl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR+ ) |
| 92 |
91
|
rpred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> r e. RR ) |
| 93 |
49 92
|
resubcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR ) |
| 94 |
93
|
rexrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) e. RR* ) |
| 95 |
49 92
|
readdcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR ) |
| 96 |
95
|
rexrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + r ) e. RR* ) |
| 97 |
74 92
|
readdcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) e. RR ) |
| 98 |
61
|
recnd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( |_ ` ( w x. ( 2 ^ n ) ) ) e. CC ) |
| 99 |
|
1cnd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> 1 e. CC ) |
| 100 |
55
|
recnd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) e. CC ) |
| 101 |
54
|
nnne0d |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 2 ^ n ) =/= 0 ) |
| 102 |
98 99 100 101
|
divdird |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) = ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) ) |
| 103 |
54
|
nnrecred |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) e. RR ) |
| 104 |
|
simprr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( 1 / ( 2 ^ n ) ) < r ) |
| 105 |
103 92 74 104
|
ltadd2dd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
| 106 |
102 105
|
eqbrtrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
| 107 |
49 68 97 72 106
|
lttrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) |
| 108 |
49 92 74
|
ltsubaddd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) <-> w < ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + r ) ) ) |
| 109 |
107 108
|
mpbird |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 110 |
49 103
|
readdcld |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) e. RR ) |
| 111 |
74 49 103 65
|
leadd1dd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) + ( 1 / ( 2 ^ n ) ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) |
| 112 |
102 111
|
eqbrtrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) <_ ( w + ( 1 / ( 2 ^ n ) ) ) ) |
| 113 |
103 92 49 104
|
ltadd2dd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( w + ( 1 / ( 2 ^ n ) ) ) < ( w + r ) ) |
| 114 |
68 110 95 112 113
|
lelttrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) |
| 115 |
|
iccssioo |
|- ( ( ( ( w - r ) e. RR* /\ ( w + r ) e. RR* ) /\ ( ( w - r ) < ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) /\ ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) < ( w + r ) ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
| 116 |
94 96 109 114 115
|
syl22anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) [,] ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) + 1 ) / ( 2 ^ n ) ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
| 117 |
83 116
|
eqsstrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ ( ( w - r ) (,) ( w + r ) ) ) |
| 118 |
|
simplrr |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( w - r ) (,) ( w + r ) ) C_ A ) |
| 119 |
117 118
|
sstrd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) C_ A ) |
| 120 |
86 90 119
|
elrabd |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } ) |
| 121 |
|
funfvima2 |
|- ( ( Fun [,] /\ { z e. ran F | ( [,] ` z ) C_ A } C_ dom [,] ) -> ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 122 |
13 24 121
|
mp2an |
|- ( ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) e. { z e. ran F | ( [,] ` z ) C_ A } -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 123 |
120 122
|
syl |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 124 |
|
elunii |
|- ( ( w e. ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) /\ ( [,] ` ( ( |_ ` ( w x. ( 2 ^ n ) ) ) F n ) ) e. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 125 |
84 123 124
|
syl2anc |
|- ( ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) /\ ( n e. NN /\ ( 1 / ( 2 ^ n ) ) < r ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 126 |
48 125
|
rexlimddv |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ ( r e. RR+ /\ ( ( w - r ) (,) ( w + r ) ) C_ A ) ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 127 |
126
|
expr |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( ( w - r ) (,) ( w + r ) ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 128 |
43 127
|
sylbid |
|- ( ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) /\ r e. RR+ ) -> ( ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 129 |
128
|
rexlimdva |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> ( E. r e. RR+ ( w ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ A -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) ) |
| 130 |
35 129
|
mpd |
|- ( ( A e. ( topGen ` ran (,) ) /\ w e. A ) -> w e. U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) ) |
| 131 |
29 130
|
eqelssd |
|- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) = A ) |
| 132 |
|
fveq2 |
|- ( c = a -> ( [,] ` c ) = ( [,] ` a ) ) |
| 133 |
132
|
sseq1d |
|- ( c = a -> ( ( [,] ` c ) C_ ( [,] ` b ) <-> ( [,] ` a ) C_ ( [,] ` b ) ) ) |
| 134 |
|
equequ1 |
|- ( c = a -> ( c = b <-> a = b ) ) |
| 135 |
133 134
|
imbi12d |
|- ( c = a -> ( ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) |
| 136 |
135
|
ralbidv |
|- ( c = a -> ( A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) <-> A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) ) ) |
| 137 |
136
|
cbvrabv |
|- { c e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` c ) C_ ( [,] ` b ) -> c = b ) } = { a e. { z e. ran F | ( [,] ` z ) C_ A } | A. b e. { z e. ran F | ( [,] ` z ) C_ A } ( ( [,] ` a ) C_ ( [,] ` b ) -> a = b ) } |
| 138 |
14
|
a1i |
|- ( A e. ( topGen ` ran (,) ) -> { z e. ran F | ( [,] ` z ) C_ A } C_ ran F ) |
| 139 |
1 137 138
|
dyadmbl |
|- ( A e. ( topGen ` ran (,) ) -> U. ( [,] " { z e. ran F | ( [,] ` z ) C_ A } ) e. dom vol ) |
| 140 |
131 139
|
eqeltrrd |
|- ( A e. ( topGen ` ran (,) ) -> A e. dom vol ) |