Metamath Proof Explorer


Theorem fllelt

Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion fllelt
|- ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) )

Proof

Step Hyp Ref Expression
1 flval
 |-  ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) )
2 1 eqcomd
 |-  ( A e. RR -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` A ) )
3 flcl
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )
4 rebtwnz
 |-  ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) )
5 breq1
 |-  ( x = ( |_ ` A ) -> ( x <_ A <-> ( |_ ` A ) <_ A ) )
6 oveq1
 |-  ( x = ( |_ ` A ) -> ( x + 1 ) = ( ( |_ ` A ) + 1 ) )
7 6 breq2d
 |-  ( x = ( |_ ` A ) -> ( A < ( x + 1 ) <-> A < ( ( |_ ` A ) + 1 ) ) )
8 5 7 anbi12d
 |-  ( x = ( |_ ` A ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) )
9 8 riota2
 |-  ( ( ( |_ ` A ) e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` A ) ) )
10 3 4 9 syl2anc
 |-  ( A e. RR -> ( ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( |_ ` A ) ) )
11 2 10 mpbird
 |-  ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) )