Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
3 |
1 2
|
dya2iocival |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( X I N ) = ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) ) |
4 |
|
simpr |
|- ( ( N e. ZZ /\ X e. ZZ ) -> X e. ZZ ) |
5 |
4
|
zred |
|- ( ( N e. ZZ /\ X e. ZZ ) -> X e. RR ) |
6 |
|
2rp |
|- 2 e. RR+ |
7 |
6
|
a1i |
|- ( ( N e. ZZ /\ X e. ZZ ) -> 2 e. RR+ ) |
8 |
|
simpl |
|- ( ( N e. ZZ /\ X e. ZZ ) -> N e. ZZ ) |
9 |
7 8
|
rpexpcld |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( 2 ^ N ) e. RR+ ) |
10 |
5 9
|
rerpdivcld |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( X / ( 2 ^ N ) ) e. RR ) |
11 |
|
1red |
|- ( ( N e. ZZ /\ X e. ZZ ) -> 1 e. RR ) |
12 |
5 11
|
readdcld |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( X + 1 ) e. RR ) |
13 |
12 9
|
rerpdivcld |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( ( X + 1 ) / ( 2 ^ N ) ) e. RR ) |
14 |
13
|
rexrd |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( ( X + 1 ) / ( 2 ^ N ) ) e. RR* ) |
15 |
|
icossre |
|- ( ( ( X / ( 2 ^ N ) ) e. RR /\ ( ( X + 1 ) / ( 2 ^ N ) ) e. RR* ) -> ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) C_ RR ) |
16 |
10 14 15
|
syl2anc |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( ( X / ( 2 ^ N ) ) [,) ( ( X + 1 ) / ( 2 ^ N ) ) ) C_ RR ) |
17 |
3 16
|
eqsstrd |
|- ( ( N e. ZZ /\ X e. ZZ ) -> ( X I N ) C_ RR ) |