| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑢 = 𝑋 → ( 𝑢 / ( 2 ↑ 𝑚 ) ) = ( 𝑋 / ( 2 ↑ 𝑚 ) ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑢 = 𝑋 → ( 𝑢 + 1 ) = ( 𝑋 + 1 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑢 = 𝑋 → ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑚 ) ) ) |
| 6 |
3 5
|
oveq12d |
⊢ ( 𝑢 = 𝑋 → ( ( 𝑢 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑋 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑁 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( 𝑋 / ( 2 ↑ 𝑚 ) ) = ( 𝑋 / ( 2 ↑ 𝑁 ) ) ) |
| 9 |
7
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑁 ) ) ) |
| 10 |
8 9
|
oveq12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑋 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑋 / ( 2 ↑ 𝑁 ) ) [,) ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 / ( 2 ↑ 𝑚 ) ) = ( 𝑥 / ( 2 ↑ 𝑚 ) ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 + 1 ) = ( 𝑥 + 1 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) |
| 14 |
11 13
|
oveq12d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑥 / ( 2 ↑ 𝑚 ) ) = ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) |
| 17 |
15
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 19 |
14 18
|
cbvmpov |
⊢ ( 𝑢 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑢 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 20 |
2 19
|
eqtr4i |
⊢ 𝐼 = ( 𝑢 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑢 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) |
| 21 |
|
ovex |
⊢ ( ( 𝑋 / ( 2 ↑ 𝑁 ) ) [,) ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑁 ) ) ) ∈ V |
| 22 |
6 10 20 21
|
ovmpo |
⊢ ( ( 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑋 𝐼 𝑁 ) = ( ( 𝑋 / ( 2 ↑ 𝑁 ) ) [,) ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 23 |
22
|
ancoms |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑋 𝐼 𝑁 ) = ( ( 𝑋 / ( 2 ↑ 𝑁 ) ) [,) ( ( 𝑋 + 1 ) / ( 2 ↑ 𝑁 ) ) ) ) |