| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
| 3 |
|
dya2icoseg.1 |
|- N = ( |_ ` ( 1 - ( 2 logb D ) ) ) |
| 4 |
|
ovex |
|- ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) e. _V |
| 5 |
2 4
|
fnmpoi |
|- I Fn ( ZZ X. ZZ ) |
| 6 |
5
|
a1i |
|- ( ( X e. RR /\ D e. RR+ ) -> I Fn ( ZZ X. ZZ ) ) |
| 7 |
|
simpl |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. RR ) |
| 8 |
|
2rp |
|- 2 e. RR+ |
| 9 |
|
1red |
|- ( D e. RR+ -> 1 e. RR ) |
| 10 |
|
2z |
|- 2 e. ZZ |
| 11 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 12 |
10 11
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 13 |
|
relogbzcl |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ D e. RR+ ) -> ( 2 logb D ) e. RR ) |
| 14 |
12 13
|
mpan |
|- ( D e. RR+ -> ( 2 logb D ) e. RR ) |
| 15 |
9 14
|
resubcld |
|- ( D e. RR+ -> ( 1 - ( 2 logb D ) ) e. RR ) |
| 16 |
15
|
flcld |
|- ( D e. RR+ -> ( |_ ` ( 1 - ( 2 logb D ) ) ) e. ZZ ) |
| 17 |
3 16
|
eqeltrid |
|- ( D e. RR+ -> N e. ZZ ) |
| 18 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ N e. ZZ ) -> ( 2 ^ N ) e. RR+ ) |
| 19 |
18
|
rpred |
|- ( ( 2 e. RR+ /\ N e. ZZ ) -> ( 2 ^ N ) e. RR ) |
| 20 |
8 17 19
|
sylancr |
|- ( D e. RR+ -> ( 2 ^ N ) e. RR ) |
| 21 |
20
|
adantl |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) e. RR ) |
| 22 |
7 21
|
remulcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X x. ( 2 ^ N ) ) e. RR ) |
| 23 |
22
|
flcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) e. ZZ ) |
| 24 |
17
|
adantl |
|- ( ( X e. RR /\ D e. RR+ ) -> N e. ZZ ) |
| 25 |
|
fnovrn |
|- ( ( I Fn ( ZZ X. ZZ ) /\ ( |_ ` ( X x. ( 2 ^ N ) ) ) e. ZZ /\ N e. ZZ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) e. ran I ) |
| 26 |
6 23 24 25
|
syl3anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) e. ran I ) |
| 27 |
23
|
zred |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) e. RR ) |
| 28 |
8 24 18
|
sylancr |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) e. RR+ ) |
| 29 |
|
fllelt |
|- ( ( X x. ( 2 ^ N ) ) e. RR -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) <_ ( X x. ( 2 ^ N ) ) /\ ( X x. ( 2 ^ N ) ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) ) ) |
| 30 |
22 29
|
syl |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) <_ ( X x. ( 2 ^ N ) ) /\ ( X x. ( 2 ^ N ) ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) ) ) |
| 31 |
30
|
simpld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) <_ ( X x. ( 2 ^ N ) ) ) |
| 32 |
27 22 28 31
|
lediv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) ) |
| 33 |
7
|
recnd |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. CC ) |
| 34 |
21
|
recnd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) e. CC ) |
| 35 |
|
2cnd |
|- ( ( X e. RR /\ D e. RR+ ) -> 2 e. CC ) |
| 36 |
|
2ne0 |
|- 2 =/= 0 |
| 37 |
36
|
a1i |
|- ( ( X e. RR /\ D e. RR+ ) -> 2 =/= 0 ) |
| 38 |
35 37 24
|
expne0d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) =/= 0 ) |
| 39 |
33 34 38
|
divcan4d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) = X ) |
| 40 |
32 39
|
breqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ X ) |
| 41 |
|
1red |
|- ( ( X e. RR /\ D e. RR+ ) -> 1 e. RR ) |
| 42 |
27 41
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) e. RR ) |
| 43 |
30
|
simprd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X x. ( 2 ^ N ) ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) ) |
| 44 |
22 42 28 43
|
ltdiv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) |
| 45 |
39 44
|
eqbrtrrd |
|- ( ( X e. RR /\ D e. RR+ ) -> X < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) |
| 46 |
27 21 38
|
redivcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. RR ) |
| 47 |
42 21 38
|
redivcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) e. RR ) |
| 48 |
47
|
rexrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) e. RR* ) |
| 49 |
|
elico2 |
|- ( ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. RR /\ ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) e. RR* ) -> ( X e. ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) <-> ( X e. RR /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ X /\ X < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) ) |
| 50 |
46 48 49
|
syl2anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X e. ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) <-> ( X e. RR /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ X /\ X < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) ) |
| 51 |
7 40 45 50
|
mpbir3and |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) |
| 52 |
1 2
|
dya2iocival |
|- ( ( N e. ZZ /\ ( |_ ` ( X x. ( 2 ^ N ) ) ) e. ZZ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) = ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) |
| 53 |
24 23 52
|
syl2anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) = ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) |
| 54 |
51 53
|
eleqtrrd |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) ) |
| 55 |
|
simpr |
|- ( ( X e. RR /\ D e. RR+ ) -> D e. RR+ ) |
| 56 |
55
|
rpred |
|- ( ( X e. RR /\ D e. RR+ ) -> D e. RR ) |
| 57 |
7 56
|
resubcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) e. RR ) |
| 58 |
57
|
rexrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) e. RR* ) |
| 59 |
7 56
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + D ) e. RR ) |
| 60 |
59
|
rexrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + D ) e. RR* ) |
| 61 |
21 38
|
rereccld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 1 / ( 2 ^ N ) ) e. RR ) |
| 62 |
7 61
|
resubcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - ( 1 / ( 2 ^ N ) ) ) e. RR ) |
| 63 |
3
|
oveq2i |
|- ( 2 ^ N ) = ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) |
| 64 |
63
|
oveq2i |
|- ( 1 / ( 2 ^ N ) ) = ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) ) |
| 65 |
|
dya2ub |
|- ( D e. RR+ -> ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) ) < D ) |
| 66 |
65
|
adantl |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) ) < D ) |
| 67 |
64 66
|
eqbrtrid |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 1 / ( 2 ^ N ) ) < D ) |
| 68 |
61 56 7 67
|
ltsub2dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) < ( X - ( 1 / ( 2 ^ N ) ) ) ) |
| 69 |
33 34
|
mulcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X x. ( 2 ^ N ) ) e. CC ) |
| 70 |
|
1cnd |
|- ( ( X e. RR /\ D e. RR+ ) -> 1 e. CC ) |
| 71 |
69 70 34 38
|
divsubdird |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) - 1 ) / ( 2 ^ N ) ) = ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) - ( 1 / ( 2 ^ N ) ) ) ) |
| 72 |
39
|
oveq1d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) - ( 1 / ( 2 ^ N ) ) ) = ( X - ( 1 / ( 2 ^ N ) ) ) ) |
| 73 |
71 72
|
eqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) - 1 ) / ( 2 ^ N ) ) = ( X - ( 1 / ( 2 ^ N ) ) ) ) |
| 74 |
22 41
|
resubcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) e. RR ) |
| 75 |
22 42 41 43
|
ltsub1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) - 1 ) ) |
| 76 |
27
|
recnd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) e. CC ) |
| 77 |
76 70
|
pncand |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) - 1 ) = ( |_ ` ( X x. ( 2 ^ N ) ) ) ) |
| 78 |
75 77
|
breqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) < ( |_ ` ( X x. ( 2 ^ N ) ) ) ) |
| 79 |
74 27 78
|
ltled |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) <_ ( |_ ` ( X x. ( 2 ^ N ) ) ) ) |
| 80 |
74 27 28 79
|
lediv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) - 1 ) / ( 2 ^ N ) ) <_ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
| 81 |
73 80
|
eqbrtrrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - ( 1 / ( 2 ^ N ) ) ) <_ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
| 82 |
57 62 46 68 81
|
ltletrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
| 83 |
7 61
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + ( 1 / ( 2 ^ N ) ) ) e. RR ) |
| 84 |
22 41
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) + 1 ) e. RR ) |
| 85 |
27 22 41 31
|
leadd1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) <_ ( ( X x. ( 2 ^ N ) ) + 1 ) ) |
| 86 |
42 84 28 85
|
lediv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( ( ( X x. ( 2 ^ N ) ) + 1 ) / ( 2 ^ N ) ) ) |
| 87 |
69 70 34 38
|
divdird |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) + 1 ) / ( 2 ^ N ) ) = ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) + ( 1 / ( 2 ^ N ) ) ) ) |
| 88 |
39
|
oveq1d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) + ( 1 / ( 2 ^ N ) ) ) = ( X + ( 1 / ( 2 ^ N ) ) ) ) |
| 89 |
87 88
|
eqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) + 1 ) / ( 2 ^ N ) ) = ( X + ( 1 / ( 2 ^ N ) ) ) ) |
| 90 |
86 89
|
breqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( X + ( 1 / ( 2 ^ N ) ) ) ) |
| 91 |
61 56 7 67
|
ltadd2dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + ( 1 / ( 2 ^ N ) ) ) < ( X + D ) ) |
| 92 |
47 83 59 90 91
|
lelttrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) < ( X + D ) ) |
| 93 |
47 59 92
|
ltled |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( X + D ) ) |
| 94 |
|
icossioo |
|- ( ( ( ( X - D ) e. RR* /\ ( X + D ) e. RR* ) /\ ( ( X - D ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) /\ ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( X + D ) ) ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) C_ ( ( X - D ) (,) ( X + D ) ) ) |
| 95 |
58 60 82 93 94
|
syl22anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) C_ ( ( X - D ) (,) ( X + D ) ) ) |
| 96 |
53 95
|
eqsstrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) |
| 97 |
|
eleq2 |
|- ( b = ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) -> ( X e. b <-> X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) ) ) |
| 98 |
|
sseq1 |
|- ( b = ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) -> ( b C_ ( ( X - D ) (,) ( X + D ) ) <-> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) ) |
| 99 |
97 98
|
anbi12d |
|- ( b = ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) -> ( ( X e. b /\ b C_ ( ( X - D ) (,) ( X + D ) ) ) <-> ( X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) ) ) |
| 100 |
99
|
rspcev |
|- ( ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) e. ran I /\ ( X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) ) -> E. b e. ran I ( X e. b /\ b C_ ( ( X - D ) (,) ( X + D ) ) ) ) |
| 101 |
26 54 96 100
|
syl12anc |
|- ( ( X e. RR /\ D e. RR+ ) -> E. b e. ran I ( X e. b /\ b C_ ( ( X - D ) (,) ( X + D ) ) ) ) |