Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
3 |
|
dya2icoseg.1 |
|- N = ( |_ ` ( 1 - ( 2 logb D ) ) ) |
4 |
|
ovex |
|- ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) e. _V |
5 |
2 4
|
fnmpoi |
|- I Fn ( ZZ X. ZZ ) |
6 |
5
|
a1i |
|- ( ( X e. RR /\ D e. RR+ ) -> I Fn ( ZZ X. ZZ ) ) |
7 |
|
simpl |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. RR ) |
8 |
|
2rp |
|- 2 e. RR+ |
9 |
|
1red |
|- ( D e. RR+ -> 1 e. RR ) |
10 |
|
2z |
|- 2 e. ZZ |
11 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
12 |
10 11
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
13 |
|
relogbzcl |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ D e. RR+ ) -> ( 2 logb D ) e. RR ) |
14 |
12 13
|
mpan |
|- ( D e. RR+ -> ( 2 logb D ) e. RR ) |
15 |
9 14
|
resubcld |
|- ( D e. RR+ -> ( 1 - ( 2 logb D ) ) e. RR ) |
16 |
15
|
flcld |
|- ( D e. RR+ -> ( |_ ` ( 1 - ( 2 logb D ) ) ) e. ZZ ) |
17 |
3 16
|
eqeltrid |
|- ( D e. RR+ -> N e. ZZ ) |
18 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ N e. ZZ ) -> ( 2 ^ N ) e. RR+ ) |
19 |
18
|
rpred |
|- ( ( 2 e. RR+ /\ N e. ZZ ) -> ( 2 ^ N ) e. RR ) |
20 |
8 17 19
|
sylancr |
|- ( D e. RR+ -> ( 2 ^ N ) e. RR ) |
21 |
20
|
adantl |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) e. RR ) |
22 |
7 21
|
remulcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X x. ( 2 ^ N ) ) e. RR ) |
23 |
22
|
flcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) e. ZZ ) |
24 |
17
|
adantl |
|- ( ( X e. RR /\ D e. RR+ ) -> N e. ZZ ) |
25 |
|
fnovrn |
|- ( ( I Fn ( ZZ X. ZZ ) /\ ( |_ ` ( X x. ( 2 ^ N ) ) ) e. ZZ /\ N e. ZZ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) e. ran I ) |
26 |
6 23 24 25
|
syl3anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) e. ran I ) |
27 |
23
|
zred |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) e. RR ) |
28 |
8 24 18
|
sylancr |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) e. RR+ ) |
29 |
|
fllelt |
|- ( ( X x. ( 2 ^ N ) ) e. RR -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) <_ ( X x. ( 2 ^ N ) ) /\ ( X x. ( 2 ^ N ) ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) ) ) |
30 |
22 29
|
syl |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) <_ ( X x. ( 2 ^ N ) ) /\ ( X x. ( 2 ^ N ) ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) ) ) |
31 |
30
|
simpld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) <_ ( X x. ( 2 ^ N ) ) ) |
32 |
27 22 28 31
|
lediv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) ) |
33 |
7
|
recnd |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. CC ) |
34 |
21
|
recnd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) e. CC ) |
35 |
|
2cnd |
|- ( ( X e. RR /\ D e. RR+ ) -> 2 e. CC ) |
36 |
|
2ne0 |
|- 2 =/= 0 |
37 |
36
|
a1i |
|- ( ( X e. RR /\ D e. RR+ ) -> 2 =/= 0 ) |
38 |
35 37 24
|
expne0d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 2 ^ N ) =/= 0 ) |
39 |
33 34 38
|
divcan4d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) = X ) |
40 |
32 39
|
breqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ X ) |
41 |
|
1red |
|- ( ( X e. RR /\ D e. RR+ ) -> 1 e. RR ) |
42 |
27 41
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) e. RR ) |
43 |
30
|
simprd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X x. ( 2 ^ N ) ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) ) |
44 |
22 42 28 43
|
ltdiv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) |
45 |
39 44
|
eqbrtrrd |
|- ( ( X e. RR /\ D e. RR+ ) -> X < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) |
46 |
27 21 38
|
redivcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. RR ) |
47 |
42 21 38
|
redivcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) e. RR ) |
48 |
47
|
rexrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) e. RR* ) |
49 |
|
elico2 |
|- ( ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) e. RR /\ ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) e. RR* ) -> ( X e. ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) <-> ( X e. RR /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ X /\ X < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) ) |
50 |
46 48 49
|
syl2anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X e. ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) <-> ( X e. RR /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) <_ X /\ X < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) ) |
51 |
7 40 45 50
|
mpbir3and |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) |
52 |
1 2
|
dya2iocival |
|- ( ( N e. ZZ /\ ( |_ ` ( X x. ( 2 ^ N ) ) ) e. ZZ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) = ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) |
53 |
24 23 52
|
syl2anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) = ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) ) |
54 |
51 53
|
eleqtrrd |
|- ( ( X e. RR /\ D e. RR+ ) -> X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) ) |
55 |
|
simpr |
|- ( ( X e. RR /\ D e. RR+ ) -> D e. RR+ ) |
56 |
55
|
rpred |
|- ( ( X e. RR /\ D e. RR+ ) -> D e. RR ) |
57 |
7 56
|
resubcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) e. RR ) |
58 |
57
|
rexrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) e. RR* ) |
59 |
7 56
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + D ) e. RR ) |
60 |
59
|
rexrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + D ) e. RR* ) |
61 |
21 38
|
rereccld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 1 / ( 2 ^ N ) ) e. RR ) |
62 |
7 61
|
resubcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - ( 1 / ( 2 ^ N ) ) ) e. RR ) |
63 |
3
|
oveq2i |
|- ( 2 ^ N ) = ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) |
64 |
63
|
oveq2i |
|- ( 1 / ( 2 ^ N ) ) = ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) ) |
65 |
|
dya2ub |
|- ( D e. RR+ -> ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) ) < D ) |
66 |
65
|
adantl |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb D ) ) ) ) ) < D ) |
67 |
64 66
|
eqbrtrid |
|- ( ( X e. RR /\ D e. RR+ ) -> ( 1 / ( 2 ^ N ) ) < D ) |
68 |
61 56 7 67
|
ltsub2dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) < ( X - ( 1 / ( 2 ^ N ) ) ) ) |
69 |
33 34
|
mulcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X x. ( 2 ^ N ) ) e. CC ) |
70 |
|
1cnd |
|- ( ( X e. RR /\ D e. RR+ ) -> 1 e. CC ) |
71 |
69 70 34 38
|
divsubdird |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) - 1 ) / ( 2 ^ N ) ) = ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) - ( 1 / ( 2 ^ N ) ) ) ) |
72 |
39
|
oveq1d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) - ( 1 / ( 2 ^ N ) ) ) = ( X - ( 1 / ( 2 ^ N ) ) ) ) |
73 |
71 72
|
eqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) - 1 ) / ( 2 ^ N ) ) = ( X - ( 1 / ( 2 ^ N ) ) ) ) |
74 |
22 41
|
resubcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) e. RR ) |
75 |
22 42 41 43
|
ltsub1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) < ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) - 1 ) ) |
76 |
27
|
recnd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( |_ ` ( X x. ( 2 ^ N ) ) ) e. CC ) |
77 |
76 70
|
pncand |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) - 1 ) = ( |_ ` ( X x. ( 2 ^ N ) ) ) ) |
78 |
75 77
|
breqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) < ( |_ ` ( X x. ( 2 ^ N ) ) ) ) |
79 |
74 27 78
|
ltled |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) - 1 ) <_ ( |_ ` ( X x. ( 2 ^ N ) ) ) ) |
80 |
74 27 28 79
|
lediv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) - 1 ) / ( 2 ^ N ) ) <_ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
81 |
73 80
|
eqbrtrrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - ( 1 / ( 2 ^ N ) ) ) <_ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
82 |
57 62 46 68 81
|
ltletrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X - D ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) ) |
83 |
7 61
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + ( 1 / ( 2 ^ N ) ) ) e. RR ) |
84 |
22 41
|
readdcld |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( X x. ( 2 ^ N ) ) + 1 ) e. RR ) |
85 |
27 22 41 31
|
leadd1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) <_ ( ( X x. ( 2 ^ N ) ) + 1 ) ) |
86 |
42 84 28 85
|
lediv1dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( ( ( X x. ( 2 ^ N ) ) + 1 ) / ( 2 ^ N ) ) ) |
87 |
69 70 34 38
|
divdird |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) + 1 ) / ( 2 ^ N ) ) = ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) + ( 1 / ( 2 ^ N ) ) ) ) |
88 |
39
|
oveq1d |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) / ( 2 ^ N ) ) + ( 1 / ( 2 ^ N ) ) ) = ( X + ( 1 / ( 2 ^ N ) ) ) ) |
89 |
87 88
|
eqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( X x. ( 2 ^ N ) ) + 1 ) / ( 2 ^ N ) ) = ( X + ( 1 / ( 2 ^ N ) ) ) ) |
90 |
86 89
|
breqtrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( X + ( 1 / ( 2 ^ N ) ) ) ) |
91 |
61 56 7 67
|
ltadd2dd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( X + ( 1 / ( 2 ^ N ) ) ) < ( X + D ) ) |
92 |
47 83 59 90 91
|
lelttrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) < ( X + D ) ) |
93 |
47 59 92
|
ltled |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( X + D ) ) |
94 |
|
icossioo |
|- ( ( ( ( X - D ) e. RR* /\ ( X + D ) e. RR* ) /\ ( ( X - D ) < ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) /\ ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) <_ ( X + D ) ) ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) C_ ( ( X - D ) (,) ( X + D ) ) ) |
95 |
58 60 82 93 94
|
syl22anc |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) / ( 2 ^ N ) ) [,) ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) + 1 ) / ( 2 ^ N ) ) ) C_ ( ( X - D ) (,) ( X + D ) ) ) |
96 |
53 95
|
eqsstrd |
|- ( ( X e. RR /\ D e. RR+ ) -> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) |
97 |
|
eleq2 |
|- ( b = ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) -> ( X e. b <-> X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) ) ) |
98 |
|
sseq1 |
|- ( b = ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) -> ( b C_ ( ( X - D ) (,) ( X + D ) ) <-> ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) ) |
99 |
97 98
|
anbi12d |
|- ( b = ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) -> ( ( X e. b /\ b C_ ( ( X - D ) (,) ( X + D ) ) ) <-> ( X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) ) ) |
100 |
99
|
rspcev |
|- ( ( ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) e. ran I /\ ( X e. ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) /\ ( ( |_ ` ( X x. ( 2 ^ N ) ) ) I N ) C_ ( ( X - D ) (,) ( X + D ) ) ) ) -> E. b e. ran I ( X e. b /\ b C_ ( ( X - D ) (,) ( X + D ) ) ) ) |
101 |
26 54 96 100
|
syl12anc |
|- ( ( X e. RR /\ D e. RR+ ) -> E. b e. ran I ( X e. b /\ b C_ ( ( X - D ) (,) ( X + D ) ) ) ) |