Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
3 |
1 2
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
4 |
|
relogbzcl |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ R e. RR+ ) -> ( 2 logb R ) e. RR ) |
5 |
3 4
|
mpan |
|- ( R e. RR+ -> ( 2 logb R ) e. RR ) |
6 |
5
|
renegcld |
|- ( R e. RR+ -> -u ( 2 logb R ) e. RR ) |
7 |
|
flltp1 |
|- ( -u ( 2 logb R ) e. RR -> -u ( 2 logb R ) < ( ( |_ ` -u ( 2 logb R ) ) + 1 ) ) |
8 |
6 7
|
syl |
|- ( R e. RR+ -> -u ( 2 logb R ) < ( ( |_ ` -u ( 2 logb R ) ) + 1 ) ) |
9 |
|
1z |
|- 1 e. ZZ |
10 |
|
fladdz |
|- ( ( -u ( 2 logb R ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( -u ( 2 logb R ) + 1 ) ) = ( ( |_ ` -u ( 2 logb R ) ) + 1 ) ) |
11 |
6 9 10
|
sylancl |
|- ( R e. RR+ -> ( |_ ` ( -u ( 2 logb R ) + 1 ) ) = ( ( |_ ` -u ( 2 logb R ) ) + 1 ) ) |
12 |
5
|
recnd |
|- ( R e. RR+ -> ( 2 logb R ) e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
negsubdi |
|- ( ( ( 2 logb R ) e. CC /\ 1 e. CC ) -> -u ( ( 2 logb R ) - 1 ) = ( -u ( 2 logb R ) + 1 ) ) |
15 |
|
negsubdi2 |
|- ( ( ( 2 logb R ) e. CC /\ 1 e. CC ) -> -u ( ( 2 logb R ) - 1 ) = ( 1 - ( 2 logb R ) ) ) |
16 |
14 15
|
eqtr3d |
|- ( ( ( 2 logb R ) e. CC /\ 1 e. CC ) -> ( -u ( 2 logb R ) + 1 ) = ( 1 - ( 2 logb R ) ) ) |
17 |
12 13 16
|
sylancl |
|- ( R e. RR+ -> ( -u ( 2 logb R ) + 1 ) = ( 1 - ( 2 logb R ) ) ) |
18 |
17
|
fveq2d |
|- ( R e. RR+ -> ( |_ ` ( -u ( 2 logb R ) + 1 ) ) = ( |_ ` ( 1 - ( 2 logb R ) ) ) ) |
19 |
11 18
|
eqtr3d |
|- ( R e. RR+ -> ( ( |_ ` -u ( 2 logb R ) ) + 1 ) = ( |_ ` ( 1 - ( 2 logb R ) ) ) ) |
20 |
8 19
|
breqtrd |
|- ( R e. RR+ -> -u ( 2 logb R ) < ( |_ ` ( 1 - ( 2 logb R ) ) ) ) |
21 |
3
|
a1i |
|- ( R e. RR+ -> 2 e. ( ZZ>= ` 2 ) ) |
22 |
|
2rp |
|- 2 e. RR+ |
23 |
22
|
a1i |
|- ( R e. RR+ -> 2 e. RR+ ) |
24 |
|
1red |
|- ( R e. RR+ -> 1 e. RR ) |
25 |
24 5
|
resubcld |
|- ( R e. RR+ -> ( 1 - ( 2 logb R ) ) e. RR ) |
26 |
25
|
flcld |
|- ( R e. RR+ -> ( |_ ` ( 1 - ( 2 logb R ) ) ) e. ZZ ) |
27 |
23 26
|
rpexpcld |
|- ( R e. RR+ -> ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) e. RR+ ) |
28 |
27
|
rpreccld |
|- ( R e. RR+ -> ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) e. RR+ ) |
29 |
|
id |
|- ( R e. RR+ -> R e. RR+ ) |
30 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) e. RR+ /\ R e. RR+ ) -> ( ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < R <-> ( 2 logb ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) < ( 2 logb R ) ) ) |
31 |
21 28 29 30
|
syl3anc |
|- ( R e. RR+ -> ( ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < R <-> ( 2 logb ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) < ( 2 logb R ) ) ) |
32 |
|
logbrec |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) e. RR+ ) -> ( 2 logb ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) = -u ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) |
33 |
21 27 32
|
syl2anc |
|- ( R e. RR+ -> ( 2 logb ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) = -u ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) |
34 |
33
|
breq1d |
|- ( R e. RR+ -> ( ( 2 logb ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) < ( 2 logb R ) <-> -u ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < ( 2 logb R ) ) ) |
35 |
|
relogbzcl |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) e. RR+ ) -> ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) e. RR ) |
36 |
21 27 35
|
syl2anc |
|- ( R e. RR+ -> ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) e. RR ) |
37 |
|
ltnegcon1 |
|- ( ( ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) e. RR /\ ( 2 logb R ) e. RR ) -> ( -u ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < ( 2 logb R ) <-> -u ( 2 logb R ) < ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) ) |
38 |
36 5 37
|
syl2anc |
|- ( R e. RR+ -> ( -u ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < ( 2 logb R ) <-> -u ( 2 logb R ) < ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) ) |
39 |
31 34 38
|
3bitrd |
|- ( R e. RR+ -> ( ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < R <-> -u ( 2 logb R ) < ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) ) ) |
40 |
|
nnlogbexp |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( |_ ` ( 1 - ( 2 logb R ) ) ) e. ZZ ) -> ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) = ( |_ ` ( 1 - ( 2 logb R ) ) ) ) |
41 |
21 26 40
|
syl2anc |
|- ( R e. RR+ -> ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) = ( |_ ` ( 1 - ( 2 logb R ) ) ) ) |
42 |
41
|
breq2d |
|- ( R e. RR+ -> ( -u ( 2 logb R ) < ( 2 logb ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) <-> -u ( 2 logb R ) < ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) |
43 |
39 42
|
bitrd |
|- ( R e. RR+ -> ( ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < R <-> -u ( 2 logb R ) < ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) |
44 |
20 43
|
mpbird |
|- ( R e. RR+ -> ( 1 / ( 2 ^ ( |_ ` ( 1 - ( 2 logb R ) ) ) ) ) < R ) |