| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unissb |
|- ( U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( RR X. RR ) <-> A. z e. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) z C_ ( RR X. RR ) ) |
| 2 |
|
elun |
|- ( z e. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) <-> ( z e. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) \/ z e. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) |
| 3 |
|
eqid |
|- ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) = ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) |
| 4 |
3
|
rnmptss |
|- ( A. e e. RR ( ( e [,) +oo ) X. RR ) e. ~P ( RR X. RR ) -> ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) C_ ~P ( RR X. RR ) ) |
| 5 |
|
pnfxr |
|- +oo e. RR* |
| 6 |
|
icossre |
|- ( ( e e. RR /\ +oo e. RR* ) -> ( e [,) +oo ) C_ RR ) |
| 7 |
5 6
|
mpan2 |
|- ( e e. RR -> ( e [,) +oo ) C_ RR ) |
| 8 |
|
xpss1 |
|- ( ( e [,) +oo ) C_ RR -> ( ( e [,) +oo ) X. RR ) C_ ( RR X. RR ) ) |
| 9 |
7 8
|
syl |
|- ( e e. RR -> ( ( e [,) +oo ) X. RR ) C_ ( RR X. RR ) ) |
| 10 |
|
ovex |
|- ( e [,) +oo ) e. _V |
| 11 |
|
reex |
|- RR e. _V |
| 12 |
10 11
|
xpex |
|- ( ( e [,) +oo ) X. RR ) e. _V |
| 13 |
12
|
elpw |
|- ( ( ( e [,) +oo ) X. RR ) e. ~P ( RR X. RR ) <-> ( ( e [,) +oo ) X. RR ) C_ ( RR X. RR ) ) |
| 14 |
9 13
|
sylibr |
|- ( e e. RR -> ( ( e [,) +oo ) X. RR ) e. ~P ( RR X. RR ) ) |
| 15 |
4 14
|
mprg |
|- ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) C_ ~P ( RR X. RR ) |
| 16 |
15
|
sseli |
|- ( z e. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) -> z e. ~P ( RR X. RR ) ) |
| 17 |
16
|
elpwid |
|- ( z e. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) -> z C_ ( RR X. RR ) ) |
| 18 |
|
eqid |
|- ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) = ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) |
| 19 |
18
|
rnmptss |
|- ( A. f e. RR ( RR X. ( f [,) +oo ) ) e. ~P ( RR X. RR ) -> ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) C_ ~P ( RR X. RR ) ) |
| 20 |
|
icossre |
|- ( ( f e. RR /\ +oo e. RR* ) -> ( f [,) +oo ) C_ RR ) |
| 21 |
5 20
|
mpan2 |
|- ( f e. RR -> ( f [,) +oo ) C_ RR ) |
| 22 |
|
xpss2 |
|- ( ( f [,) +oo ) C_ RR -> ( RR X. ( f [,) +oo ) ) C_ ( RR X. RR ) ) |
| 23 |
21 22
|
syl |
|- ( f e. RR -> ( RR X. ( f [,) +oo ) ) C_ ( RR X. RR ) ) |
| 24 |
|
ovex |
|- ( f [,) +oo ) e. _V |
| 25 |
11 24
|
xpex |
|- ( RR X. ( f [,) +oo ) ) e. _V |
| 26 |
25
|
elpw |
|- ( ( RR X. ( f [,) +oo ) ) e. ~P ( RR X. RR ) <-> ( RR X. ( f [,) +oo ) ) C_ ( RR X. RR ) ) |
| 27 |
23 26
|
sylibr |
|- ( f e. RR -> ( RR X. ( f [,) +oo ) ) e. ~P ( RR X. RR ) ) |
| 28 |
19 27
|
mprg |
|- ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) C_ ~P ( RR X. RR ) |
| 29 |
28
|
sseli |
|- ( z e. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) -> z e. ~P ( RR X. RR ) ) |
| 30 |
29
|
elpwid |
|- ( z e. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) -> z C_ ( RR X. RR ) ) |
| 31 |
17 30
|
jaoi |
|- ( ( z e. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) \/ z e. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) -> z C_ ( RR X. RR ) ) |
| 32 |
2 31
|
sylbi |
|- ( z e. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) -> z C_ ( RR X. RR ) ) |
| 33 |
1 32
|
mprgbir |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( RR X. RR ) |
| 34 |
|
rexr |
|- ( ( 1st ` z ) e. RR -> ( 1st ` z ) e. RR* ) |
| 35 |
5
|
a1i |
|- ( ( 1st ` z ) e. RR -> +oo e. RR* ) |
| 36 |
|
ltpnf |
|- ( ( 1st ` z ) e. RR -> ( 1st ` z ) < +oo ) |
| 37 |
|
lbico1 |
|- ( ( ( 1st ` z ) e. RR* /\ +oo e. RR* /\ ( 1st ` z ) < +oo ) -> ( 1st ` z ) e. ( ( 1st ` z ) [,) +oo ) ) |
| 38 |
34 35 36 37
|
syl3anc |
|- ( ( 1st ` z ) e. RR -> ( 1st ` z ) e. ( ( 1st ` z ) [,) +oo ) ) |
| 39 |
38
|
anim1i |
|- ( ( ( 1st ` z ) e. RR /\ ( 2nd ` z ) e. RR ) -> ( ( 1st ` z ) e. ( ( 1st ` z ) [,) +oo ) /\ ( 2nd ` z ) e. RR ) ) |
| 40 |
39
|
anim2i |
|- ( ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. RR /\ ( 2nd ` z ) e. RR ) ) -> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. ( ( 1st ` z ) [,) +oo ) /\ ( 2nd ` z ) e. RR ) ) ) |
| 41 |
|
elxp7 |
|- ( z e. ( RR X. RR ) <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. RR /\ ( 2nd ` z ) e. RR ) ) ) |
| 42 |
|
elxp7 |
|- ( z e. ( ( ( 1st ` z ) [,) +oo ) X. RR ) <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. ( ( 1st ` z ) [,) +oo ) /\ ( 2nd ` z ) e. RR ) ) ) |
| 43 |
40 41 42
|
3imtr4i |
|- ( z e. ( RR X. RR ) -> z e. ( ( ( 1st ` z ) [,) +oo ) X. RR ) ) |
| 44 |
|
xp1st |
|- ( z e. ( RR X. RR ) -> ( 1st ` z ) e. RR ) |
| 45 |
|
oveq1 |
|- ( e = ( 1st ` z ) -> ( e [,) +oo ) = ( ( 1st ` z ) [,) +oo ) ) |
| 46 |
45
|
xpeq1d |
|- ( e = ( 1st ` z ) -> ( ( e [,) +oo ) X. RR ) = ( ( ( 1st ` z ) [,) +oo ) X. RR ) ) |
| 47 |
|
ovex |
|- ( ( 1st ` z ) [,) +oo ) e. _V |
| 48 |
47 11
|
xpex |
|- ( ( ( 1st ` z ) [,) +oo ) X. RR ) e. _V |
| 49 |
46 3 48
|
fvmpt |
|- ( ( 1st ` z ) e. RR -> ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` ( 1st ` z ) ) = ( ( ( 1st ` z ) [,) +oo ) X. RR ) ) |
| 50 |
44 49
|
syl |
|- ( z e. ( RR X. RR ) -> ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` ( 1st ` z ) ) = ( ( ( 1st ` z ) [,) +oo ) X. RR ) ) |
| 51 |
43 50
|
eleqtrrd |
|- ( z e. ( RR X. RR ) -> z e. ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` ( 1st ` z ) ) ) |
| 52 |
|
elfvunirn |
|- ( z e. ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` ( 1st ` z ) ) -> z e. U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ) |
| 53 |
51 52
|
syl |
|- ( z e. ( RR X. RR ) -> z e. U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ) |
| 54 |
53
|
ssriv |
|- ( RR X. RR ) C_ U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) |
| 55 |
|
ssun3 |
|- ( ( RR X. RR ) C_ U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) -> ( RR X. RR ) C_ ( U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. U. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) |
| 56 |
54 55
|
ax-mp |
|- ( RR X. RR ) C_ ( U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. U. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) |
| 57 |
|
uniun |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = ( U. ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. U. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) |
| 58 |
56 57
|
sseqtrri |
|- ( RR X. RR ) C_ U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) |
| 59 |
33 58
|
eqssi |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = ( RR X. RR ) |