Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
sxbrsigalem0 |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = ( RR X. RR ) |
3 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
4 |
1 3
|
eqeltri |
|- J e. Top |
5 |
4 4
|
txtopi |
|- ( J tX J ) e. Top |
6 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
7 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
8 |
6 7
|
eqtr4i |
|- RR = U. J |
9 |
4 4 8 8
|
txunii |
|- ( RR X. RR ) = U. ( J tX J ) |
10 |
5 9
|
unicls |
|- U. ( Clsd ` ( J tX J ) ) = ( RR X. RR ) |
11 |
2 10
|
eqtr4i |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = U. ( Clsd ` ( J tX J ) ) |
12 |
|
ovex |
|- ( e [,) +oo ) e. _V |
13 |
|
reex |
|- RR e. _V |
14 |
12 13
|
xpex |
|- ( ( e [,) +oo ) X. RR ) e. _V |
15 |
|
eqid |
|- ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) = ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) |
16 |
14 15
|
fnmpti |
|- ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) Fn RR |
17 |
|
oveq1 |
|- ( e = u -> ( e [,) +oo ) = ( u [,) +oo ) ) |
18 |
17
|
xpeq1d |
|- ( e = u -> ( ( e [,) +oo ) X. RR ) = ( ( u [,) +oo ) X. RR ) ) |
19 |
|
ovex |
|- ( u [,) +oo ) e. _V |
20 |
19 13
|
xpex |
|- ( ( u [,) +oo ) X. RR ) e. _V |
21 |
18 15 20
|
fvmpt |
|- ( u e. RR -> ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) = ( ( u [,) +oo ) X. RR ) ) |
22 |
|
icopnfcld |
|- ( u e. RR -> ( u [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
23 |
1
|
fveq2i |
|- ( Clsd ` J ) = ( Clsd ` ( topGen ` ran (,) ) ) |
24 |
22 23
|
eleqtrrdi |
|- ( u e. RR -> ( u [,) +oo ) e. ( Clsd ` J ) ) |
25 |
|
dif0 |
|- ( RR \ (/) ) = RR |
26 |
|
0opn |
|- ( J e. Top -> (/) e. J ) |
27 |
4 26
|
ax-mp |
|- (/) e. J |
28 |
8
|
opncld |
|- ( ( J e. Top /\ (/) e. J ) -> ( RR \ (/) ) e. ( Clsd ` J ) ) |
29 |
4 27 28
|
mp2an |
|- ( RR \ (/) ) e. ( Clsd ` J ) |
30 |
25 29
|
eqeltrri |
|- RR e. ( Clsd ` J ) |
31 |
|
txcld |
|- ( ( ( u [,) +oo ) e. ( Clsd ` J ) /\ RR e. ( Clsd ` J ) ) -> ( ( u [,) +oo ) X. RR ) e. ( Clsd ` ( J tX J ) ) ) |
32 |
24 30 31
|
sylancl |
|- ( u e. RR -> ( ( u [,) +oo ) X. RR ) e. ( Clsd ` ( J tX J ) ) ) |
33 |
21 32
|
eqeltrd |
|- ( u e. RR -> ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) e. ( Clsd ` ( J tX J ) ) ) |
34 |
33
|
rgen |
|- A. u e. RR ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) e. ( Clsd ` ( J tX J ) ) |
35 |
|
fnfvrnss |
|- ( ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) Fn RR /\ A. u e. RR ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) e. ( Clsd ` ( J tX J ) ) ) -> ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) C_ ( Clsd ` ( J tX J ) ) ) |
36 |
16 34 35
|
mp2an |
|- ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) C_ ( Clsd ` ( J tX J ) ) |
37 |
|
ovex |
|- ( f [,) +oo ) e. _V |
38 |
13 37
|
xpex |
|- ( RR X. ( f [,) +oo ) ) e. _V |
39 |
|
eqid |
|- ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) = ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) |
40 |
38 39
|
fnmpti |
|- ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) Fn RR |
41 |
|
oveq1 |
|- ( f = v -> ( f [,) +oo ) = ( v [,) +oo ) ) |
42 |
41
|
xpeq2d |
|- ( f = v -> ( RR X. ( f [,) +oo ) ) = ( RR X. ( v [,) +oo ) ) ) |
43 |
|
ovex |
|- ( v [,) +oo ) e. _V |
44 |
13 43
|
xpex |
|- ( RR X. ( v [,) +oo ) ) e. _V |
45 |
42 39 44
|
fvmpt |
|- ( v e. RR -> ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) = ( RR X. ( v [,) +oo ) ) ) |
46 |
|
icopnfcld |
|- ( v e. RR -> ( v [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
47 |
46 23
|
eleqtrrdi |
|- ( v e. RR -> ( v [,) +oo ) e. ( Clsd ` J ) ) |
48 |
|
txcld |
|- ( ( RR e. ( Clsd ` J ) /\ ( v [,) +oo ) e. ( Clsd ` J ) ) -> ( RR X. ( v [,) +oo ) ) e. ( Clsd ` ( J tX J ) ) ) |
49 |
30 47 48
|
sylancr |
|- ( v e. RR -> ( RR X. ( v [,) +oo ) ) e. ( Clsd ` ( J tX J ) ) ) |
50 |
45 49
|
eqeltrd |
|- ( v e. RR -> ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) e. ( Clsd ` ( J tX J ) ) ) |
51 |
50
|
rgen |
|- A. v e. RR ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) e. ( Clsd ` ( J tX J ) ) |
52 |
|
fnfvrnss |
|- ( ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) Fn RR /\ A. v e. RR ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) e. ( Clsd ` ( J tX J ) ) ) -> ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) C_ ( Clsd ` ( J tX J ) ) ) |
53 |
40 51 52
|
mp2an |
|- ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) C_ ( Clsd ` ( J tX J ) ) |
54 |
36 53
|
unssi |
|- ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( Clsd ` ( J tX J ) ) |
55 |
|
fvex |
|- ( Clsd ` ( J tX J ) ) e. _V |
56 |
|
sssigagen |
|- ( ( Clsd ` ( J tX J ) ) e. _V -> ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) ) |
57 |
55 56
|
ax-mp |
|- ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |
58 |
54 57
|
sstri |
|- ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |
59 |
|
sigagenss2 |
|- ( ( U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = U. ( Clsd ` ( J tX J ) ) /\ ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) /\ ( Clsd ` ( J tX J ) ) e. _V ) -> ( sigaGen ` ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) ) |
60 |
11 58 55 59
|
mp3an |
|- ( sigaGen ` ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |