| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
sxbrsigalem0 |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = ( RR X. RR ) |
| 3 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 4 |
1 3
|
eqeltri |
|- J e. Top |
| 5 |
4 4
|
txtopi |
|- ( J tX J ) e. Top |
| 6 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 7 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
| 8 |
6 7
|
eqtr4i |
|- RR = U. J |
| 9 |
4 4 8 8
|
txunii |
|- ( RR X. RR ) = U. ( J tX J ) |
| 10 |
5 9
|
unicls |
|- U. ( Clsd ` ( J tX J ) ) = ( RR X. RR ) |
| 11 |
2 10
|
eqtr4i |
|- U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = U. ( Clsd ` ( J tX J ) ) |
| 12 |
|
ovex |
|- ( e [,) +oo ) e. _V |
| 13 |
|
reex |
|- RR e. _V |
| 14 |
12 13
|
xpex |
|- ( ( e [,) +oo ) X. RR ) e. _V |
| 15 |
|
eqid |
|- ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) = ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) |
| 16 |
14 15
|
fnmpti |
|- ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) Fn RR |
| 17 |
|
oveq1 |
|- ( e = u -> ( e [,) +oo ) = ( u [,) +oo ) ) |
| 18 |
17
|
xpeq1d |
|- ( e = u -> ( ( e [,) +oo ) X. RR ) = ( ( u [,) +oo ) X. RR ) ) |
| 19 |
|
ovex |
|- ( u [,) +oo ) e. _V |
| 20 |
19 13
|
xpex |
|- ( ( u [,) +oo ) X. RR ) e. _V |
| 21 |
18 15 20
|
fvmpt |
|- ( u e. RR -> ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) = ( ( u [,) +oo ) X. RR ) ) |
| 22 |
|
icopnfcld |
|- ( u e. RR -> ( u [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 23 |
1
|
fveq2i |
|- ( Clsd ` J ) = ( Clsd ` ( topGen ` ran (,) ) ) |
| 24 |
22 23
|
eleqtrrdi |
|- ( u e. RR -> ( u [,) +oo ) e. ( Clsd ` J ) ) |
| 25 |
|
dif0 |
|- ( RR \ (/) ) = RR |
| 26 |
|
0opn |
|- ( J e. Top -> (/) e. J ) |
| 27 |
4 26
|
ax-mp |
|- (/) e. J |
| 28 |
8
|
opncld |
|- ( ( J e. Top /\ (/) e. J ) -> ( RR \ (/) ) e. ( Clsd ` J ) ) |
| 29 |
4 27 28
|
mp2an |
|- ( RR \ (/) ) e. ( Clsd ` J ) |
| 30 |
25 29
|
eqeltrri |
|- RR e. ( Clsd ` J ) |
| 31 |
|
txcld |
|- ( ( ( u [,) +oo ) e. ( Clsd ` J ) /\ RR e. ( Clsd ` J ) ) -> ( ( u [,) +oo ) X. RR ) e. ( Clsd ` ( J tX J ) ) ) |
| 32 |
24 30 31
|
sylancl |
|- ( u e. RR -> ( ( u [,) +oo ) X. RR ) e. ( Clsd ` ( J tX J ) ) ) |
| 33 |
21 32
|
eqeltrd |
|- ( u e. RR -> ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) e. ( Clsd ` ( J tX J ) ) ) |
| 34 |
33
|
rgen |
|- A. u e. RR ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) e. ( Clsd ` ( J tX J ) ) |
| 35 |
|
fnfvrnss |
|- ( ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) Fn RR /\ A. u e. RR ( ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) ` u ) e. ( Clsd ` ( J tX J ) ) ) -> ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) C_ ( Clsd ` ( J tX J ) ) ) |
| 36 |
16 34 35
|
mp2an |
|- ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) C_ ( Clsd ` ( J tX J ) ) |
| 37 |
|
ovex |
|- ( f [,) +oo ) e. _V |
| 38 |
13 37
|
xpex |
|- ( RR X. ( f [,) +oo ) ) e. _V |
| 39 |
|
eqid |
|- ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) = ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) |
| 40 |
38 39
|
fnmpti |
|- ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) Fn RR |
| 41 |
|
oveq1 |
|- ( f = v -> ( f [,) +oo ) = ( v [,) +oo ) ) |
| 42 |
41
|
xpeq2d |
|- ( f = v -> ( RR X. ( f [,) +oo ) ) = ( RR X. ( v [,) +oo ) ) ) |
| 43 |
|
ovex |
|- ( v [,) +oo ) e. _V |
| 44 |
13 43
|
xpex |
|- ( RR X. ( v [,) +oo ) ) e. _V |
| 45 |
42 39 44
|
fvmpt |
|- ( v e. RR -> ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) = ( RR X. ( v [,) +oo ) ) ) |
| 46 |
|
icopnfcld |
|- ( v e. RR -> ( v [,) +oo ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 47 |
46 23
|
eleqtrrdi |
|- ( v e. RR -> ( v [,) +oo ) e. ( Clsd ` J ) ) |
| 48 |
|
txcld |
|- ( ( RR e. ( Clsd ` J ) /\ ( v [,) +oo ) e. ( Clsd ` J ) ) -> ( RR X. ( v [,) +oo ) ) e. ( Clsd ` ( J tX J ) ) ) |
| 49 |
30 47 48
|
sylancr |
|- ( v e. RR -> ( RR X. ( v [,) +oo ) ) e. ( Clsd ` ( J tX J ) ) ) |
| 50 |
45 49
|
eqeltrd |
|- ( v e. RR -> ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) e. ( Clsd ` ( J tX J ) ) ) |
| 51 |
50
|
rgen |
|- A. v e. RR ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) e. ( Clsd ` ( J tX J ) ) |
| 52 |
|
fnfvrnss |
|- ( ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) Fn RR /\ A. v e. RR ( ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ` v ) e. ( Clsd ` ( J tX J ) ) ) -> ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) C_ ( Clsd ` ( J tX J ) ) ) |
| 53 |
40 51 52
|
mp2an |
|- ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) C_ ( Clsd ` ( J tX J ) ) |
| 54 |
36 53
|
unssi |
|- ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( Clsd ` ( J tX J ) ) |
| 55 |
|
fvex |
|- ( Clsd ` ( J tX J ) ) e. _V |
| 56 |
|
sssigagen |
|- ( ( Clsd ` ( J tX J ) ) e. _V -> ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) ) |
| 57 |
55 56
|
ax-mp |
|- ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |
| 58 |
54 57
|
sstri |
|- ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |
| 59 |
|
sigagenss2 |
|- ( ( U. ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) = U. ( Clsd ` ( J tX J ) ) /\ ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) /\ ( Clsd ` ( J tX J ) ) e. _V ) -> ( sigaGen ` ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) ) |
| 60 |
11 58 55 59
|
mp3an |
|- ( sigaGen ` ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |