Metamath Proof Explorer


Theorem sxbrsigalem3

Description: The sigma-algebra generated by the closed half-spaces of ( RR X. RR ) is a subset of the sigma-algebra generated by the closed sets of ( RR X. RR ) . (Contributed by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Hypothesis sxbrsiga.0 J = topGen ran .
Assertion sxbrsigalem3 𝛔 ran e e +∞ × ran f × f +∞ 𝛔 Clsd J × t J

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 sxbrsigalem0 ran e e +∞ × ran f × f +∞ = 2
3 retop topGen ran . Top
4 1 3 eqeltri J Top
5 4 4 txtopi J × t J Top
6 uniretop = topGen ran .
7 1 unieqi J = topGen ran .
8 6 7 eqtr4i = J
9 4 4 8 8 txunii 2 = J × t J
10 5 9 unicls Clsd J × t J = 2
11 2 10 eqtr4i ran e e +∞ × ran f × f +∞ = Clsd J × t J
12 ovex e +∞ V
13 reex V
14 12 13 xpex e +∞ × V
15 eqid e e +∞ × = e e +∞ ×
16 14 15 fnmpti e e +∞ × Fn
17 oveq1 e = u e +∞ = u +∞
18 17 xpeq1d e = u e +∞ × = u +∞ ×
19 ovex u +∞ V
20 19 13 xpex u +∞ × V
21 18 15 20 fvmpt u e e +∞ × u = u +∞ ×
22 icopnfcld u u +∞ Clsd topGen ran .
23 1 fveq2i Clsd J = Clsd topGen ran .
24 22 23 eleqtrrdi u u +∞ Clsd J
25 dif0 =
26 0opn J Top J
27 4 26 ax-mp J
28 8 opncld J Top J Clsd J
29 4 27 28 mp2an Clsd J
30 25 29 eqeltrri Clsd J
31 txcld u +∞ Clsd J Clsd J u +∞ × Clsd J × t J
32 24 30 31 sylancl u u +∞ × Clsd J × t J
33 21 32 eqeltrd u e e +∞ × u Clsd J × t J
34 33 rgen u e e +∞ × u Clsd J × t J
35 fnfvrnss e e +∞ × Fn u e e +∞ × u Clsd J × t J ran e e +∞ × Clsd J × t J
36 16 34 35 mp2an ran e e +∞ × Clsd J × t J
37 ovex f +∞ V
38 13 37 xpex × f +∞ V
39 eqid f × f +∞ = f × f +∞
40 38 39 fnmpti f × f +∞ Fn
41 oveq1 f = v f +∞ = v +∞
42 41 xpeq2d f = v × f +∞ = × v +∞
43 ovex v +∞ V
44 13 43 xpex × v +∞ V
45 42 39 44 fvmpt v f × f +∞ v = × v +∞
46 icopnfcld v v +∞ Clsd topGen ran .
47 46 23 eleqtrrdi v v +∞ Clsd J
48 txcld Clsd J v +∞ Clsd J × v +∞ Clsd J × t J
49 30 47 48 sylancr v × v +∞ Clsd J × t J
50 45 49 eqeltrd v f × f +∞ v Clsd J × t J
51 50 rgen v f × f +∞ v Clsd J × t J
52 fnfvrnss f × f +∞ Fn v f × f +∞ v Clsd J × t J ran f × f +∞ Clsd J × t J
53 40 51 52 mp2an ran f × f +∞ Clsd J × t J
54 36 53 unssi ran e e +∞ × ran f × f +∞ Clsd J × t J
55 fvex Clsd J × t J V
56 sssigagen Clsd J × t J V Clsd J × t J 𝛔 Clsd J × t J
57 55 56 ax-mp Clsd J × t J 𝛔 Clsd J × t J
58 54 57 sstri ran e e +∞ × ran f × f +∞ 𝛔 Clsd J × t J
59 sigagenss2 ran e e +∞ × ran f × f +∞ = Clsd J × t J ran e e +∞ × ran f × f +∞ 𝛔 Clsd J × t J Clsd J × t J V 𝛔 ran e e +∞ × ran f × f +∞ 𝛔 Clsd J × t J
60 11 58 55 59 mp3an 𝛔 ran e e +∞ × ran f × f +∞ 𝛔 Clsd J × t J