Description: Right-unbounded closed intervals are closed sets of the standard topology on RR . (Contributed by Mario Carneiro, 17-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | icopnfcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr | |
|
2 | 1 | a1i | |
3 | rexr | |
|
4 | pnfxr | |
|
5 | 4 | a1i | |
6 | mnflt | |
|
7 | ltpnf | |
|
8 | df-ioo | |
|
9 | df-ico | |
|
10 | xrlenlt | |
|
11 | xrlttr | |
|
12 | xrltletr | |
|
13 | 8 9 10 8 11 12 | ixxun | |
14 | 2 3 5 6 7 13 | syl32anc | |
15 | ioomax | |
|
16 | 14 15 | eqtrdi | |
17 | ioossre | |
|
18 | 8 9 10 | ixxdisj | |
19 | 1 3 5 18 | mp3an2i | |
20 | uneqdifeq | |
|
21 | 17 19 20 | sylancr | |
22 | 16 21 | mpbid | |
23 | retop | |
|
24 | iooretop | |
|
25 | uniretop | |
|
26 | 25 | opncld | |
27 | 23 24 26 | mp2an | |
28 | 22 27 | eqeltrrdi | |