Metamath Proof Explorer


Theorem icopnfcld

Description: Right-unbounded closed intervals are closed sets of the standard topology on RR . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion icopnfcld AA+∞ClsdtopGenran.

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 1 a1i A−∞*
3 rexr AA*
4 pnfxr +∞*
5 4 a1i A+∞*
6 mnflt A−∞<A
7 ltpnf AA<+∞
8 df-ioo .=x*,y*z*|x<zz<y
9 df-ico .=x*,y*z*|xzz<y
10 xrlenlt A*w*Aw¬w<A
11 xrlttr w*A*+∞*w<AA<+∞w<+∞
12 xrltletr −∞*A*w*−∞<AAw−∞<w
13 8 9 10 8 11 12 ixxun −∞*A*+∞*−∞<AA<+∞−∞AA+∞=−∞+∞
14 2 3 5 6 7 13 syl32anc A−∞AA+∞=−∞+∞
15 ioomax −∞+∞=
16 14 15 eqtrdi A−∞AA+∞=
17 ioossre −∞A
18 8 9 10 ixxdisj −∞*A*+∞*−∞AA+∞=
19 1 3 5 18 mp3an2i A−∞AA+∞=
20 uneqdifeq −∞A−∞AA+∞=−∞AA+∞=−∞A=A+∞
21 17 19 20 sylancr A−∞AA+∞=−∞A=A+∞
22 16 21 mpbid A−∞A=A+∞
23 retop topGenran.Top
24 iooretop −∞AtopGenran.
25 uniretop =topGenran.
26 25 opncld topGenran.Top−∞AtopGenran.−∞AClsdtopGenran.
27 23 24 26 mp2an −∞AClsdtopGenran.
28 22 27 eqeltrrdi AA+∞ClsdtopGenran.