Metamath Proof Explorer


Theorem iocmnfcld

Description: Left-unbounded closed intervals are closed sets of the standard topology on RR . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion iocmnfcld A−∞AClsdtopGenran.

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 1 a1i A−∞*
3 rexr AA*
4 pnfxr +∞*
5 4 a1i A+∞*
6 mnflt A−∞<A
7 ltpnf AA<+∞
8 df-ioc .=x*,y*z*|x<zzy
9 df-ioo .=x*,y*z*|x<zz<y
10 xrltnle A*w*A<w¬wA
11 xrlelttr w*A*+∞*wAA<+∞w<+∞
12 xrlttr −∞*A*w*−∞<AA<w−∞<w
13 8 9 10 9 11 12 ixxun −∞*A*+∞*−∞<AA<+∞−∞AA+∞=−∞+∞
14 2 3 5 6 7 13 syl32anc A−∞AA+∞=−∞+∞
15 ioomax −∞+∞=
16 14 15 eqtrdi A−∞AA+∞=
17 iocssre −∞*A−∞A
18 1 17 mpan A−∞A
19 8 9 10 ixxdisj −∞*A*+∞*−∞AA+∞=
20 1 3 5 19 mp3an2i A−∞AA+∞=
21 uneqdifeq −∞A−∞AA+∞=−∞AA+∞=−∞A=A+∞
22 18 20 21 syl2anc A−∞AA+∞=−∞A=A+∞
23 16 22 mpbid A−∞A=A+∞
24 iooretop A+∞topGenran.
25 23 24 eqeltrdi A−∞AtopGenran.
26 retop topGenran.Top
27 uniretop =topGenran.
28 27 iscld2 topGenran.Top−∞A−∞AClsdtopGenran.−∞AtopGenran.
29 26 18 28 sylancr A−∞AClsdtopGenran.−∞AtopGenran.
30 25 29 mpbird A−∞AClsdtopGenran.