Metamath Proof Explorer


Theorem sigagenss2

Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Assertion sigagenss2 A = B A 𝛔 B B V 𝛔 A 𝛔 B

Proof

Step Hyp Ref Expression
1 sigagensiga B V 𝛔 B sigAlgebra B
2 1 3ad2ant3 A = B A 𝛔 B B V 𝛔 B sigAlgebra B
3 simp1 A = B A 𝛔 B B V A = B
4 3 fveq2d A = B A 𝛔 B B V sigAlgebra A = sigAlgebra B
5 2 4 eleqtrrd A = B A 𝛔 B B V 𝛔 B sigAlgebra A
6 simp2 A = B A 𝛔 B B V A 𝛔 B
7 sigagenss 𝛔 B sigAlgebra A A 𝛔 B 𝛔 A 𝛔 B
8 5 6 7 syl2anc A = B A 𝛔 B B V 𝛔 A 𝛔 B