Step |
Hyp |
Ref |
Expression |
1 |
|
sigagensiga |
⊢ ( 𝐵 ∈ 𝑉 → ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ ∪ 𝐵 ) ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ ∪ 𝐵 ) ) |
3 |
|
simp1 |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ∪ 𝐴 = ∪ 𝐵 ) |
4 |
3
|
fveq2d |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ( sigAlgebra ‘ ∪ 𝐴 ) = ( sigAlgebra ‘ ∪ 𝐵 ) ) |
5 |
2 4
|
eleqtrrd |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ) |
6 |
|
simp2 |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ) |
7 |
|
sigagenss |
⊢ ( ( ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ ∪ 𝐴 ) ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ) → ( sigaGen ‘ 𝐴 ) ⊆ ( sigaGen ‘ 𝐵 ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ( sigaGen ‘ 𝐴 ) ⊆ ( sigaGen ‘ 𝐵 ) ) |