Metamath Proof Explorer


Theorem sigagenss2

Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Assertion sigagenss2 ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → ( sigaGen ‘ 𝐴 ) ⊆ ( sigaGen ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sigagensiga ( 𝐵𝑉 → ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ 𝐵 ) )
2 1 3ad2ant3 ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ 𝐵 ) )
3 simp1 ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → 𝐴 = 𝐵 )
4 3 fveq2d ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → ( sigAlgebra ‘ 𝐴 ) = ( sigAlgebra ‘ 𝐵 ) )
5 2 4 eleqtrrd ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ 𝐴 ) )
6 simp2 ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) )
7 sigagenss ( ( ( sigaGen ‘ 𝐵 ) ∈ ( sigAlgebra ‘ 𝐴 ) ∧ 𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ) → ( sigaGen ‘ 𝐴 ) ⊆ ( sigaGen ‘ 𝐵 ) )
8 5 6 7 syl2anc ( ( 𝐴 = 𝐵𝐴 ⊆ ( sigaGen ‘ 𝐵 ) ∧ 𝐵𝑉 ) → ( sigaGen ‘ 𝐴 ) ⊆ ( sigaGen ‘ 𝐵 ) )