Metamath Proof Explorer


Theorem sxbrsigalem0

Description: The closed half-spaces of ( RR X. RR ) cover ( RR X. RR ) . (Contributed by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Assertion sxbrsigalem0 ran e e +∞ × ran f × f +∞ = 2

Proof

Step Hyp Ref Expression
1 unissb ran e e +∞ × ran f × f +∞ 2 z ran e e +∞ × ran f × f +∞ z 2
2 elun z ran e e +∞ × ran f × f +∞ z ran e e +∞ × z ran f × f +∞
3 eqid e e +∞ × = e e +∞ ×
4 3 rnmptss e e +∞ × 𝒫 2 ran e e +∞ × 𝒫 2
5 pnfxr +∞ *
6 icossre e +∞ * e +∞
7 5 6 mpan2 e e +∞
8 xpss1 e +∞ e +∞ × 2
9 7 8 syl e e +∞ × 2
10 ovex e +∞ V
11 reex V
12 10 11 xpex e +∞ × V
13 12 elpw e +∞ × 𝒫 2 e +∞ × 2
14 9 13 sylibr e e +∞ × 𝒫 2
15 4 14 mprg ran e e +∞ × 𝒫 2
16 15 sseli z ran e e +∞ × z 𝒫 2
17 16 elpwid z ran e e +∞ × z 2
18 eqid f × f +∞ = f × f +∞
19 18 rnmptss f × f +∞ 𝒫 2 ran f × f +∞ 𝒫 2
20 icossre f +∞ * f +∞
21 5 20 mpan2 f f +∞
22 xpss2 f +∞ × f +∞ 2
23 21 22 syl f × f +∞ 2
24 ovex f +∞ V
25 11 24 xpex × f +∞ V
26 25 elpw × f +∞ 𝒫 2 × f +∞ 2
27 23 26 sylibr f × f +∞ 𝒫 2
28 19 27 mprg ran f × f +∞ 𝒫 2
29 28 sseli z ran f × f +∞ z 𝒫 2
30 29 elpwid z ran f × f +∞ z 2
31 17 30 jaoi z ran e e +∞ × z ran f × f +∞ z 2
32 2 31 sylbi z ran e e +∞ × ran f × f +∞ z 2
33 1 32 mprgbir ran e e +∞ × ran f × f +∞ 2
34 rexr 1 st z 1 st z *
35 5 a1i 1 st z +∞ *
36 ltpnf 1 st z 1 st z < +∞
37 lbico1 1 st z * +∞ * 1 st z < +∞ 1 st z 1 st z +∞
38 34 35 36 37 syl3anc 1 st z 1 st z 1 st z +∞
39 38 anim1i 1 st z 2 nd z 1 st z 1 st z +∞ 2 nd z
40 39 anim2i z V × V 1 st z 2 nd z z V × V 1 st z 1 st z +∞ 2 nd z
41 elxp7 z 2 z V × V 1 st z 2 nd z
42 elxp7 z 1 st z +∞ × z V × V 1 st z 1 st z +∞ 2 nd z
43 40 41 42 3imtr4i z 2 z 1 st z +∞ ×
44 xp1st z 2 1 st z
45 oveq1 e = 1 st z e +∞ = 1 st z +∞
46 45 xpeq1d e = 1 st z e +∞ × = 1 st z +∞ ×
47 ovex 1 st z +∞ V
48 47 11 xpex 1 st z +∞ × V
49 46 3 48 fvmpt 1 st z e e +∞ × 1 st z = 1 st z +∞ ×
50 44 49 syl z 2 e e +∞ × 1 st z = 1 st z +∞ ×
51 43 50 eleqtrrd z 2 z e e +∞ × 1 st z
52 elfvunirn z e e +∞ × 1 st z z ran e e +∞ ×
53 51 52 syl z 2 z ran e e +∞ ×
54 53 ssriv 2 ran e e +∞ ×
55 ssun3 2 ran e e +∞ × 2 ran e e +∞ × ran f × f +∞
56 54 55 ax-mp 2 ran e e +∞ × ran f × f +∞
57 uniun ran e e +∞ × ran f × f +∞ = ran e e +∞ × ran f × f +∞
58 56 57 sseqtrri 2 ran e e +∞ × ran f × f +∞
59 33 58 eqssi ran e e +∞ × ran f × f +∞ = 2