Metamath Proof Explorer


Theorem sxbrsigalem0

Description: The closed half-spaces of ( RR X. RR ) cover ( RR X. RR ) . (Contributed by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Assertion sxbrsigalem0 ranee+∞×ranf×f+∞=2

Proof

Step Hyp Ref Expression
1 unissb ranee+∞×ranf×f+∞2zranee+∞×ranf×f+∞z2
2 elun zranee+∞×ranf×f+∞zranee+∞×zranf×f+∞
3 eqid ee+∞×=ee+∞×
4 3 rnmptss ee+∞×𝒫2ranee+∞×𝒫2
5 pnfxr +∞*
6 icossre e+∞*e+∞
7 5 6 mpan2 ee+∞
8 xpss1 e+∞e+∞×2
9 7 8 syl ee+∞×2
10 ovex e+∞V
11 reex V
12 10 11 xpex e+∞×V
13 12 elpw e+∞×𝒫2e+∞×2
14 9 13 sylibr ee+∞×𝒫2
15 4 14 mprg ranee+∞×𝒫2
16 15 sseli zranee+∞×z𝒫2
17 16 elpwid zranee+∞×z2
18 eqid f×f+∞=f×f+∞
19 18 rnmptss f×f+∞𝒫2ranf×f+∞𝒫2
20 icossre f+∞*f+∞
21 5 20 mpan2 ff+∞
22 xpss2 f+∞×f+∞2
23 21 22 syl f×f+∞2
24 ovex f+∞V
25 11 24 xpex ×f+∞V
26 25 elpw ×f+∞𝒫2×f+∞2
27 23 26 sylibr f×f+∞𝒫2
28 19 27 mprg ranf×f+∞𝒫2
29 28 sseli zranf×f+∞z𝒫2
30 29 elpwid zranf×f+∞z2
31 17 30 jaoi zranee+∞×zranf×f+∞z2
32 2 31 sylbi zranee+∞×ranf×f+∞z2
33 1 32 mprgbir ranee+∞×ranf×f+∞2
34 rexr 1stz1stz*
35 5 a1i 1stz+∞*
36 ltpnf 1stz1stz<+∞
37 lbico1 1stz*+∞*1stz<+∞1stz1stz+∞
38 34 35 36 37 syl3anc 1stz1stz1stz+∞
39 38 anim1i 1stz2ndz1stz1stz+∞2ndz
40 39 anim2i zV×V1stz2ndzzV×V1stz1stz+∞2ndz
41 elxp7 z2zV×V1stz2ndz
42 elxp7 z1stz+∞×zV×V1stz1stz+∞2ndz
43 40 41 42 3imtr4i z2z1stz+∞×
44 xp1st z21stz
45 oveq1 e=1stze+∞=1stz+∞
46 45 xpeq1d e=1stze+∞×=1stz+∞×
47 ovex 1stz+∞V
48 47 11 xpex 1stz+∞×V
49 46 3 48 fvmpt 1stzee+∞×1stz=1stz+∞×
50 44 49 syl z2ee+∞×1stz=1stz+∞×
51 43 50 eleqtrrd z2zee+∞×1stz
52 elfvunirn zee+∞×1stzzranee+∞×
53 51 52 syl z2zranee+∞×
54 53 ssriv 2ranee+∞×
55 ssun3 2ranee+∞×2ranee+∞×ranf×f+∞
56 54 55 ax-mp 2ranee+∞×ranf×f+∞
57 uniun ranee+∞×ranf×f+∞=ranee+∞×ranf×f+∞
58 56 57 sseqtrri 2ranee+∞×ranf×f+∞
59 33 58 eqssi ranee+∞×ranf×f+∞=2