Step |
Hyp |
Ref |
Expression |
1 |
|
unissb |
⊢ ( ∪ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ⊆ ( ℝ × ℝ ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) 𝑧 ⊆ ( ℝ × ℝ ) ) |
2 |
|
elun |
⊢ ( 𝑧 ∈ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ↔ ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∨ 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ) |
3 |
|
eqid |
⊢ ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) = ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) |
4 |
3
|
rnmptss |
⊢ ( ∀ 𝑒 ∈ ℝ ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ 𝒫 ( ℝ × ℝ ) → ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ⊆ 𝒫 ( ℝ × ℝ ) ) |
5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
6 |
|
icossre |
⊢ ( ( 𝑒 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑒 [,) +∞ ) ⊆ ℝ ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝑒 ∈ ℝ → ( 𝑒 [,) +∞ ) ⊆ ℝ ) |
8 |
|
xpss1 |
⊢ ( ( 𝑒 [,) +∞ ) ⊆ ℝ → ( ( 𝑒 [,) +∞ ) × ℝ ) ⊆ ( ℝ × ℝ ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑒 ∈ ℝ → ( ( 𝑒 [,) +∞ ) × ℝ ) ⊆ ( ℝ × ℝ ) ) |
10 |
|
ovex |
⊢ ( 𝑒 [,) +∞ ) ∈ V |
11 |
|
reex |
⊢ ℝ ∈ V |
12 |
10 11
|
xpex |
⊢ ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ V |
13 |
12
|
elpw |
⊢ ( ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ 𝒫 ( ℝ × ℝ ) ↔ ( ( 𝑒 [,) +∞ ) × ℝ ) ⊆ ( ℝ × ℝ ) ) |
14 |
9 13
|
sylibr |
⊢ ( 𝑒 ∈ ℝ → ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ 𝒫 ( ℝ × ℝ ) ) |
15 |
4 14
|
mprg |
⊢ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ⊆ 𝒫 ( ℝ × ℝ ) |
16 |
15
|
sseli |
⊢ ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) → 𝑧 ∈ 𝒫 ( ℝ × ℝ ) ) |
17 |
16
|
elpwid |
⊢ ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) → 𝑧 ⊆ ( ℝ × ℝ ) ) |
18 |
|
eqid |
⊢ ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) = ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) |
19 |
18
|
rnmptss |
⊢ ( ∀ 𝑓 ∈ ℝ ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ 𝒫 ( ℝ × ℝ ) → ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ⊆ 𝒫 ( ℝ × ℝ ) ) |
20 |
|
icossre |
⊢ ( ( 𝑓 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑓 [,) +∞ ) ⊆ ℝ ) |
21 |
5 20
|
mpan2 |
⊢ ( 𝑓 ∈ ℝ → ( 𝑓 [,) +∞ ) ⊆ ℝ ) |
22 |
|
xpss2 |
⊢ ( ( 𝑓 [,) +∞ ) ⊆ ℝ → ( ℝ × ( 𝑓 [,) +∞ ) ) ⊆ ( ℝ × ℝ ) ) |
23 |
21 22
|
syl |
⊢ ( 𝑓 ∈ ℝ → ( ℝ × ( 𝑓 [,) +∞ ) ) ⊆ ( ℝ × ℝ ) ) |
24 |
|
ovex |
⊢ ( 𝑓 [,) +∞ ) ∈ V |
25 |
11 24
|
xpex |
⊢ ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ V |
26 |
25
|
elpw |
⊢ ( ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ 𝒫 ( ℝ × ℝ ) ↔ ( ℝ × ( 𝑓 [,) +∞ ) ) ⊆ ( ℝ × ℝ ) ) |
27 |
23 26
|
sylibr |
⊢ ( 𝑓 ∈ ℝ → ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ 𝒫 ( ℝ × ℝ ) ) |
28 |
19 27
|
mprg |
⊢ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ⊆ 𝒫 ( ℝ × ℝ ) |
29 |
28
|
sseli |
⊢ ( 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) → 𝑧 ∈ 𝒫 ( ℝ × ℝ ) ) |
30 |
29
|
elpwid |
⊢ ( 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) → 𝑧 ⊆ ( ℝ × ℝ ) ) |
31 |
17 30
|
jaoi |
⊢ ( ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∨ 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) → 𝑧 ⊆ ( ℝ × ℝ ) ) |
32 |
2 31
|
sylbi |
⊢ ( 𝑧 ∈ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) → 𝑧 ⊆ ( ℝ × ℝ ) ) |
33 |
1 32
|
mprgbir |
⊢ ∪ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ⊆ ( ℝ × ℝ ) |
34 |
|
funmpt |
⊢ Fun ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) |
35 |
|
rexr |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ℝ → ( 1st ‘ 𝑧 ) ∈ ℝ* ) |
36 |
5
|
a1i |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ℝ → +∞ ∈ ℝ* ) |
37 |
|
ltpnf |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ℝ → ( 1st ‘ 𝑧 ) < +∞ ) |
38 |
|
lbico1 |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 1st ‘ 𝑧 ) < +∞ ) → ( 1st ‘ 𝑧 ) ∈ ( ( 1st ‘ 𝑧 ) [,) +∞ ) ) |
39 |
35 36 37 38
|
syl3anc |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ℝ → ( 1st ‘ 𝑧 ) ∈ ( ( 1st ‘ 𝑧 ) [,) +∞ ) ) |
40 |
39
|
anim1i |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ ℝ ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) → ( ( 1st ‘ 𝑧 ) ∈ ( ( 1st ‘ 𝑧 ) [,) +∞ ) ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) ) |
41 |
40
|
anim2i |
⊢ ( ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ ℝ ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ ( ( 1st ‘ 𝑧 ) [,) +∞ ) ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) ) ) |
42 |
|
elxp7 |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ ℝ ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) ) ) |
43 |
|
elxp7 |
⊢ ( 𝑧 ∈ ( ( ( 1st ‘ 𝑧 ) [,) +∞ ) × ℝ ) ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ ( ( 1st ‘ 𝑧 ) [,) +∞ ) ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) ) ) |
44 |
41 42 43
|
3imtr4i |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 ∈ ( ( ( 1st ‘ 𝑧 ) [,) +∞ ) × ℝ ) ) |
45 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑧 ) ∈ ℝ ) |
46 |
|
oveq1 |
⊢ ( 𝑒 = ( 1st ‘ 𝑧 ) → ( 𝑒 [,) +∞ ) = ( ( 1st ‘ 𝑧 ) [,) +∞ ) ) |
47 |
46
|
xpeq1d |
⊢ ( 𝑒 = ( 1st ‘ 𝑧 ) → ( ( 𝑒 [,) +∞ ) × ℝ ) = ( ( ( 1st ‘ 𝑧 ) [,) +∞ ) × ℝ ) ) |
48 |
|
ovex |
⊢ ( ( 1st ‘ 𝑧 ) [,) +∞ ) ∈ V |
49 |
48 11
|
xpex |
⊢ ( ( ( 1st ‘ 𝑧 ) [,) +∞ ) × ℝ ) ∈ V |
50 |
47 3 49
|
fvmpt |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ℝ → ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st ‘ 𝑧 ) ) = ( ( ( 1st ‘ 𝑧 ) [,) +∞ ) × ℝ ) ) |
51 |
45 50
|
syl |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st ‘ 𝑧 ) ) = ( ( ( 1st ‘ 𝑧 ) [,) +∞ ) × ℝ ) ) |
52 |
44 51
|
eleqtrrd |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 ∈ ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st ‘ 𝑧 ) ) ) |
53 |
|
elunirn2 |
⊢ ( ( Fun ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∧ 𝑧 ∈ ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st ‘ 𝑧 ) ) ) → 𝑧 ∈ ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ) |
54 |
34 52 53
|
sylancr |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 ∈ ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ) |
55 |
54
|
ssriv |
⊢ ( ℝ × ℝ ) ⊆ ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) |
56 |
|
ssun3 |
⊢ ( ( ℝ × ℝ ) ⊆ ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) → ( ℝ × ℝ ) ⊆ ( ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ) |
57 |
55 56
|
ax-mp |
⊢ ( ℝ × ℝ ) ⊆ ( ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) |
58 |
|
uniun |
⊢ ∪ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) = ( ∪ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) |
59 |
57 58
|
sseqtrri |
⊢ ( ℝ × ℝ ) ⊆ ∪ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) |
60 |
33 59
|
eqssi |
⊢ ∪ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) = ( ℝ × ℝ ) |