Metamath Proof Explorer


Theorem sxbrsigalem0

Description: The closed half-spaces of ( RR X. RR ) cover ( RR X. RR ) . (Contributed by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Assertion sxbrsigalem0 ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) = ( ℝ × ℝ )

Proof

Step Hyp Ref Expression
1 unissb ( ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ⊆ ( ℝ × ℝ ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) 𝑧 ⊆ ( ℝ × ℝ ) )
2 elun ( 𝑧 ∈ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ↔ ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∨ 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) )
3 eqid ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) = ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) )
4 3 rnmptss ( ∀ 𝑒 ∈ ℝ ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ 𝒫 ( ℝ × ℝ ) → ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ⊆ 𝒫 ( ℝ × ℝ ) )
5 pnfxr +∞ ∈ ℝ*
6 icossre ( ( 𝑒 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑒 [,) +∞ ) ⊆ ℝ )
7 5 6 mpan2 ( 𝑒 ∈ ℝ → ( 𝑒 [,) +∞ ) ⊆ ℝ )
8 xpss1 ( ( 𝑒 [,) +∞ ) ⊆ ℝ → ( ( 𝑒 [,) +∞ ) × ℝ ) ⊆ ( ℝ × ℝ ) )
9 7 8 syl ( 𝑒 ∈ ℝ → ( ( 𝑒 [,) +∞ ) × ℝ ) ⊆ ( ℝ × ℝ ) )
10 ovex ( 𝑒 [,) +∞ ) ∈ V
11 reex ℝ ∈ V
12 10 11 xpex ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ V
13 12 elpw ( ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ 𝒫 ( ℝ × ℝ ) ↔ ( ( 𝑒 [,) +∞ ) × ℝ ) ⊆ ( ℝ × ℝ ) )
14 9 13 sylibr ( 𝑒 ∈ ℝ → ( ( 𝑒 [,) +∞ ) × ℝ ) ∈ 𝒫 ( ℝ × ℝ ) )
15 4 14 mprg ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ⊆ 𝒫 ( ℝ × ℝ )
16 15 sseli ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) → 𝑧 ∈ 𝒫 ( ℝ × ℝ ) )
17 16 elpwid ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) → 𝑧 ⊆ ( ℝ × ℝ ) )
18 eqid ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) = ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) )
19 18 rnmptss ( ∀ 𝑓 ∈ ℝ ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ 𝒫 ( ℝ × ℝ ) → ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ⊆ 𝒫 ( ℝ × ℝ ) )
20 icossre ( ( 𝑓 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑓 [,) +∞ ) ⊆ ℝ )
21 5 20 mpan2 ( 𝑓 ∈ ℝ → ( 𝑓 [,) +∞ ) ⊆ ℝ )
22 xpss2 ( ( 𝑓 [,) +∞ ) ⊆ ℝ → ( ℝ × ( 𝑓 [,) +∞ ) ) ⊆ ( ℝ × ℝ ) )
23 21 22 syl ( 𝑓 ∈ ℝ → ( ℝ × ( 𝑓 [,) +∞ ) ) ⊆ ( ℝ × ℝ ) )
24 ovex ( 𝑓 [,) +∞ ) ∈ V
25 11 24 xpex ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ V
26 25 elpw ( ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ 𝒫 ( ℝ × ℝ ) ↔ ( ℝ × ( 𝑓 [,) +∞ ) ) ⊆ ( ℝ × ℝ ) )
27 23 26 sylibr ( 𝑓 ∈ ℝ → ( ℝ × ( 𝑓 [,) +∞ ) ) ∈ 𝒫 ( ℝ × ℝ ) )
28 19 27 mprg ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ⊆ 𝒫 ( ℝ × ℝ )
29 28 sseli ( 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) → 𝑧 ∈ 𝒫 ( ℝ × ℝ ) )
30 29 elpwid ( 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) → 𝑧 ⊆ ( ℝ × ℝ ) )
31 17 30 jaoi ( ( 𝑧 ∈ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∨ 𝑧 ∈ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) → 𝑧 ⊆ ( ℝ × ℝ ) )
32 2 31 sylbi ( 𝑧 ∈ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) → 𝑧 ⊆ ( ℝ × ℝ ) )
33 1 32 mprgbir ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) ⊆ ( ℝ × ℝ )
34 funmpt Fun ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) )
35 rexr ( ( 1st𝑧 ) ∈ ℝ → ( 1st𝑧 ) ∈ ℝ* )
36 5 a1i ( ( 1st𝑧 ) ∈ ℝ → +∞ ∈ ℝ* )
37 ltpnf ( ( 1st𝑧 ) ∈ ℝ → ( 1st𝑧 ) < +∞ )
38 lbico1 ( ( ( 1st𝑧 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 1st𝑧 ) < +∞ ) → ( 1st𝑧 ) ∈ ( ( 1st𝑧 ) [,) +∞ ) )
39 35 36 37 38 syl3anc ( ( 1st𝑧 ) ∈ ℝ → ( 1st𝑧 ) ∈ ( ( 1st𝑧 ) [,) +∞ ) )
40 39 anim1i ( ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) → ( ( 1st𝑧 ) ∈ ( ( 1st𝑧 ) [,) +∞ ) ∧ ( 2nd𝑧 ) ∈ ℝ ) )
41 40 anim2i ( ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) ) → ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st𝑧 ) ∈ ( ( 1st𝑧 ) [,) +∞ ) ∧ ( 2nd𝑧 ) ∈ ℝ ) ) )
42 elxp7 ( 𝑧 ∈ ( ℝ × ℝ ) ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st𝑧 ) ∈ ℝ ∧ ( 2nd𝑧 ) ∈ ℝ ) ) )
43 elxp7 ( 𝑧 ∈ ( ( ( 1st𝑧 ) [,) +∞ ) × ℝ ) ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st𝑧 ) ∈ ( ( 1st𝑧 ) [,) +∞ ) ∧ ( 2nd𝑧 ) ∈ ℝ ) ) )
44 41 42 43 3imtr4i ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 ∈ ( ( ( 1st𝑧 ) [,) +∞ ) × ℝ ) )
45 xp1st ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st𝑧 ) ∈ ℝ )
46 oveq1 ( 𝑒 = ( 1st𝑧 ) → ( 𝑒 [,) +∞ ) = ( ( 1st𝑧 ) [,) +∞ ) )
47 46 xpeq1d ( 𝑒 = ( 1st𝑧 ) → ( ( 𝑒 [,) +∞ ) × ℝ ) = ( ( ( 1st𝑧 ) [,) +∞ ) × ℝ ) )
48 ovex ( ( 1st𝑧 ) [,) +∞ ) ∈ V
49 48 11 xpex ( ( ( 1st𝑧 ) [,) +∞ ) × ℝ ) ∈ V
50 47 3 49 fvmpt ( ( 1st𝑧 ) ∈ ℝ → ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st𝑧 ) ) = ( ( ( 1st𝑧 ) [,) +∞ ) × ℝ ) )
51 45 50 syl ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st𝑧 ) ) = ( ( ( 1st𝑧 ) [,) +∞ ) × ℝ ) )
52 44 51 eleqtrrd ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 ∈ ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st𝑧 ) ) )
53 elunirn2 ( ( Fun ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∧ 𝑧 ∈ ( ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ‘ ( 1st𝑧 ) ) ) → 𝑧 ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) )
54 34 52 53 sylancr ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) )
55 54 ssriv ( ℝ × ℝ ) ⊆ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) )
56 ssun3 ( ( ℝ × ℝ ) ⊆ ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) → ( ℝ × ℝ ) ⊆ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) )
57 55 56 ax-mp ( ℝ × ℝ ) ⊆ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) )
58 uniun ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) = ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) )
59 57 58 sseqtrri ( ℝ × ℝ ) ⊆ ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) )
60 33 59 eqssi ( ran ( 𝑒 ∈ ℝ ↦ ( ( 𝑒 [,) +∞ ) × ℝ ) ) ∪ ran ( 𝑓 ∈ ℝ ↦ ( ℝ × ( 𝑓 [,) +∞ ) ) ) ) = ( ℝ × ℝ )