Metamath Proof Explorer


Theorem unicls

Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypotheses unicls.1 JTop
unicls.2 X=J
Assertion unicls ClsdJ=X

Proof

Step Hyp Ref Expression
1 unicls.1 JTop
2 unicls.2 X=J
3 2 cldss2 ClsdJ𝒫X
4 sspwuni ClsdJ𝒫XClsdJX
5 3 4 mpbi ClsdJX
6 2 topcld JTopXClsdJ
7 1 6 ax-mp XClsdJ
8 unissel ClsdJXXClsdJClsdJ=X
9 5 7 8 mp2an ClsdJ=X