Metamath Proof Explorer


Theorem unicls

Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypotheses unicls.1
|- J e. Top
unicls.2
|- X = U. J
Assertion unicls
|- U. ( Clsd ` J ) = X

Proof

Step Hyp Ref Expression
1 unicls.1
 |-  J e. Top
2 unicls.2
 |-  X = U. J
3 2 cldss2
 |-  ( Clsd ` J ) C_ ~P X
4 sspwuni
 |-  ( ( Clsd ` J ) C_ ~P X <-> U. ( Clsd ` J ) C_ X )
5 3 4 mpbi
 |-  U. ( Clsd ` J ) C_ X
6 2 topcld
 |-  ( J e. Top -> X e. ( Clsd ` J ) )
7 1 6 ax-mp
 |-  X e. ( Clsd ` J )
8 unissel
 |-  ( ( U. ( Clsd ` J ) C_ X /\ X e. ( Clsd ` J ) ) -> U. ( Clsd ` J ) = X )
9 5 7 8 mp2an
 |-  U. ( Clsd ` J ) = X