Metamath Proof Explorer


Theorem unicls

Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypotheses unicls.1 𝐽 ∈ Top
unicls.2 𝑋 = 𝐽
Assertion unicls ( Clsd ‘ 𝐽 ) = 𝑋

Proof

Step Hyp Ref Expression
1 unicls.1 𝐽 ∈ Top
2 unicls.2 𝑋 = 𝐽
3 2 cldss2 ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋
4 sspwuni ( ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 ( Clsd ‘ 𝐽 ) ⊆ 𝑋 )
5 3 4 mpbi ( Clsd ‘ 𝐽 ) ⊆ 𝑋
6 2 topcld ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) )
7 1 6 ax-mp 𝑋 ∈ ( Clsd ‘ 𝐽 )
8 unissel ( ( ( Clsd ‘ 𝐽 ) ⊆ 𝑋𝑋 ∈ ( Clsd ‘ 𝐽 ) ) → ( Clsd ‘ 𝐽 ) = 𝑋 )
9 5 7 8 mp2an ( Clsd ‘ 𝐽 ) = 𝑋