Description: The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unicls.1 | ⊢ 𝐽 ∈ Top | |
| unicls.2 | ⊢ 𝑋 = ∪ 𝐽 | ||
| Assertion | unicls | ⊢ ∪ ( Clsd ‘ 𝐽 ) = 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unicls.1 | ⊢ 𝐽 ∈ Top | |
| 2 | unicls.2 | ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | cldss2 | ⊢ ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 |
| 4 | sspwuni | ⊢ ( ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 ↔ ∪ ( Clsd ‘ 𝐽 ) ⊆ 𝑋 ) | |
| 5 | 3 4 | mpbi | ⊢ ∪ ( Clsd ‘ 𝐽 ) ⊆ 𝑋 |
| 6 | 2 | topcld | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 7 | 1 6 | ax-mp | ⊢ 𝑋 ∈ ( Clsd ‘ 𝐽 ) |
| 8 | unissel | ⊢ ( ( ∪ ( Clsd ‘ 𝐽 ) ⊆ 𝑋 ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( Clsd ‘ 𝐽 ) = 𝑋 ) | |
| 9 | 5 7 8 | mp2an | ⊢ ∪ ( Clsd ‘ 𝐽 ) = 𝑋 |