Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
3 |
|
dya2ioc.2 |
⊢ 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) |
4 |
|
dya2iocnrect.1 |
⊢ 𝐵 = ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) |
5 |
4
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ) |
6 |
|
eqid |
⊢ ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) = ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) |
7 |
|
vex |
⊢ 𝑒 ∈ V |
8 |
|
vex |
⊢ 𝑓 ∈ V |
9 |
7 8
|
xpex |
⊢ ( 𝑒 × 𝑓 ) ∈ V |
10 |
6 9
|
elrnmpo |
⊢ ( 𝐴 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ↔ ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) 𝐴 = ( 𝑒 × 𝑓 ) ) |
11 |
5 10
|
sylbb |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) 𝐴 = ( 𝑒 × 𝑓 ) ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) 𝐴 = ( 𝑒 × 𝑓 ) ) |
13 |
|
simp1 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
14 |
|
simp3 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
15 |
12 13 14
|
jca32 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) ) |
16 |
|
r19.41vv |
⊢ ( ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) ↔ ( ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) ) |
17 |
16
|
biimpri |
⊢ ( ( ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) ) |
18 |
|
simprl |
⊢ ( ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
19 |
|
simpl |
⊢ ( ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → 𝐴 = ( 𝑒 × 𝑓 ) ) |
20 |
|
simprr |
⊢ ( ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐴 ) |
21 |
20 19
|
eleqtrd |
⊢ ( ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → 𝑋 ∈ ( 𝑒 × 𝑓 ) ) |
22 |
18 19 21
|
3jca |
⊢ ( ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) |
23 |
|
simpr |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) |
24 |
|
xp1st |
⊢ ( 𝑋 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑋 ) ∈ ℝ ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) → ( 1st ‘ 𝑋 ) ∈ ℝ ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ( 1st ‘ 𝑋 ) ∈ ℝ ) |
27 |
|
simpll |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → 𝑒 ∈ ran (,) ) |
28 |
|
xp1st |
⊢ ( 𝑋 ∈ ( 𝑒 × 𝑓 ) → ( 1st ‘ 𝑋 ) ∈ 𝑒 ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) → ( 1st ‘ 𝑋 ) ∈ 𝑒 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ( 1st ‘ 𝑋 ) ∈ 𝑒 ) |
31 |
1 2
|
dya2icoseg2 |
⊢ ( ( ( 1st ‘ 𝑋 ) ∈ ℝ ∧ 𝑒 ∈ ran (,) ∧ ( 1st ‘ 𝑋 ) ∈ 𝑒 ) → ∃ 𝑠 ∈ ran 𝐼 ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ) |
32 |
26 27 30 31
|
syl3anc |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ∃ 𝑠 ∈ ran 𝐼 ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ) |
33 |
|
xp2nd |
⊢ ( 𝑋 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑋 ) ∈ ℝ ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) → ( 2nd ‘ 𝑋 ) ∈ ℝ ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ( 2nd ‘ 𝑋 ) ∈ ℝ ) |
36 |
|
simplr |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → 𝑓 ∈ ran (,) ) |
37 |
|
xp2nd |
⊢ ( 𝑋 ∈ ( 𝑒 × 𝑓 ) → ( 2nd ‘ 𝑋 ) ∈ 𝑓 ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) → ( 2nd ‘ 𝑋 ) ∈ 𝑓 ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ( 2nd ‘ 𝑋 ) ∈ 𝑓 ) |
40 |
1 2
|
dya2icoseg2 |
⊢ ( ( ( 2nd ‘ 𝑋 ) ∈ ℝ ∧ 𝑓 ∈ ran (,) ∧ ( 2nd ‘ 𝑋 ) ∈ 𝑓 ) → ∃ 𝑡 ∈ ran 𝐼 ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) |
41 |
35 36 39 40
|
syl3anc |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ∃ 𝑡 ∈ ran 𝐼 ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) |
42 |
|
reeanv |
⊢ ( ∃ 𝑠 ∈ ran 𝐼 ∃ 𝑡 ∈ ran 𝐼 ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ↔ ( ∃ 𝑠 ∈ ran 𝐼 ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ∃ 𝑡 ∈ ran 𝐼 ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) |
43 |
32 41 42
|
sylanbrc |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ∃ 𝑠 ∈ ran 𝐼 ∃ 𝑡 ∈ ran 𝐼 ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) |
44 |
|
eqid |
⊢ ( 𝑠 × 𝑡 ) = ( 𝑠 × 𝑡 ) |
45 |
|
xpeq1 |
⊢ ( 𝑢 = 𝑠 → ( 𝑢 × 𝑣 ) = ( 𝑠 × 𝑣 ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑠 × 𝑡 ) = ( 𝑢 × 𝑣 ) ↔ ( 𝑠 × 𝑡 ) = ( 𝑠 × 𝑣 ) ) ) |
47 |
|
xpeq2 |
⊢ ( 𝑣 = 𝑡 → ( 𝑠 × 𝑣 ) = ( 𝑠 × 𝑡 ) ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑣 = 𝑡 → ( ( 𝑠 × 𝑡 ) = ( 𝑠 × 𝑣 ) ↔ ( 𝑠 × 𝑡 ) = ( 𝑠 × 𝑡 ) ) ) |
49 |
46 48
|
rspc2ev |
⊢ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ∧ ( 𝑠 × 𝑡 ) = ( 𝑠 × 𝑡 ) ) → ∃ 𝑢 ∈ ran 𝐼 ∃ 𝑣 ∈ ran 𝐼 ( 𝑠 × 𝑡 ) = ( 𝑢 × 𝑣 ) ) |
50 |
44 49
|
mp3an3 |
⊢ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑢 ∈ ran 𝐼 ∃ 𝑣 ∈ ran 𝐼 ( 𝑠 × 𝑡 ) = ( 𝑢 × 𝑣 ) ) |
51 |
|
vex |
⊢ 𝑢 ∈ V |
52 |
|
vex |
⊢ 𝑣 ∈ V |
53 |
51 52
|
xpex |
⊢ ( 𝑢 × 𝑣 ) ∈ V |
54 |
3 53
|
elrnmpo |
⊢ ( ( 𝑠 × 𝑡 ) ∈ ran 𝑅 ↔ ∃ 𝑢 ∈ ran 𝐼 ∃ 𝑣 ∈ ran 𝐼 ( 𝑠 × 𝑡 ) = ( 𝑢 × 𝑣 ) ) |
55 |
50 54
|
sylibr |
⊢ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) → ( 𝑠 × 𝑡 ) ∈ ran 𝑅 ) |
56 |
55
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( 𝑠 × 𝑡 ) ∈ ran 𝑅 ) |
57 |
|
xpss |
⊢ ( ℝ × ℝ ) ⊆ ( V × V ) |
58 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
59 |
57 58
|
sselid |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → 𝑋 ∈ ( V × V ) ) |
60 |
|
simprrl |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ) |
61 |
60
|
simpld |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( 1st ‘ 𝑋 ) ∈ 𝑠 ) |
62 |
|
simprrr |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) |
63 |
62
|
simpld |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( 2nd ‘ 𝑋 ) ∈ 𝑡 ) |
64 |
|
elxp7 |
⊢ ( 𝑋 ∈ ( 𝑠 × 𝑡 ) ↔ ( 𝑋 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ ( 2nd ‘ 𝑋 ) ∈ 𝑡 ) ) ) |
65 |
64
|
biimpri |
⊢ ( ( 𝑋 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ ( 2nd ‘ 𝑋 ) ∈ 𝑡 ) ) → 𝑋 ∈ ( 𝑠 × 𝑡 ) ) |
66 |
59 61 63 65
|
syl12anc |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → 𝑋 ∈ ( 𝑠 × 𝑡 ) ) |
67 |
60
|
simprd |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → 𝑠 ⊆ 𝑒 ) |
68 |
62
|
simprd |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → 𝑡 ⊆ 𝑓 ) |
69 |
|
xpss12 |
⊢ ( ( 𝑠 ⊆ 𝑒 ∧ 𝑡 ⊆ 𝑓 ) → ( 𝑠 × 𝑡 ) ⊆ ( 𝑒 × 𝑓 ) ) |
70 |
67 68 69
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( 𝑠 × 𝑡 ) ⊆ ( 𝑒 × 𝑓 ) ) |
71 |
|
simpl2 |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → 𝐴 = ( 𝑒 × 𝑓 ) ) |
72 |
70 71
|
sseqtrrd |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ( 𝑠 × 𝑡 ) ⊆ 𝐴 ) |
73 |
|
eleq2 |
⊢ ( 𝑏 = ( 𝑠 × 𝑡 ) → ( 𝑋 ∈ 𝑏 ↔ 𝑋 ∈ ( 𝑠 × 𝑡 ) ) ) |
74 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑠 × 𝑡 ) → ( 𝑏 ⊆ 𝐴 ↔ ( 𝑠 × 𝑡 ) ⊆ 𝐴 ) ) |
75 |
73 74
|
anbi12d |
⊢ ( 𝑏 = ( 𝑠 × 𝑡 ) → ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ↔ ( 𝑋 ∈ ( 𝑠 × 𝑡 ) ∧ ( 𝑠 × 𝑡 ) ⊆ 𝐴 ) ) ) |
76 |
75
|
rspcev |
⊢ ( ( ( 𝑠 × 𝑡 ) ∈ ran 𝑅 ∧ ( 𝑋 ∈ ( 𝑠 × 𝑡 ) ∧ ( 𝑠 × 𝑡 ) ⊆ 𝐴 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
77 |
56 66 72 76
|
syl12anc |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ∧ ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) ∧ ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
78 |
77
|
exp32 |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) → ( ( 𝑠 ∈ ran 𝐼 ∧ 𝑡 ∈ ran 𝐼 ) → ( ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) ) ) |
79 |
78
|
rexlimdvv |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) → ( ∃ 𝑠 ∈ ran 𝐼 ∃ 𝑡 ∈ ran 𝐼 ( ( ( 1st ‘ 𝑋 ) ∈ 𝑠 ∧ 𝑠 ⊆ 𝑒 ) ∧ ( ( 2nd ‘ 𝑋 ) ∈ 𝑡 ∧ 𝑡 ⊆ 𝑓 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) ) |
80 |
23 43 79
|
sylc |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 = ( 𝑒 × 𝑓 ) ∧ 𝑋 ∈ ( 𝑒 × 𝑓 ) ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
81 |
22 80
|
sylan2 |
⊢ ( ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) ∧ ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
82 |
81
|
ex |
⊢ ( ( 𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,) ) → ( ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) ) |
83 |
82
|
rexlimivv |
⊢ ( ∃ 𝑒 ∈ ran (,) ∃ 𝑓 ∈ ran (,) ( 𝐴 = ( 𝑒 × 𝑓 ) ∧ ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑋 ∈ 𝐴 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
84 |
15 17 83
|
3syl |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |