Metamath Proof Explorer


Theorem r19.41vv

Description: Version of r19.41v with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Assertion r19.41vv ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.41v ( ∃ 𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦𝐵 𝜑𝜓 ) )
2 1 rexbii ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑𝜓 ) )
3 r19.41v ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝜑𝜓 ) )
4 2 3 bitri ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝜑𝜓 ) )