Metamath Proof Explorer


Theorem dya2iocnei

Description: For any point of an open set of the usual topology on ( RR X. RR ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
dya2ioc.1 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
dya2ioc.2 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) )
Assertion dya2iocnei ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝐴 ) )

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
2 dya2ioc.1 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
3 dya2ioc.2 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) )
4 elunii ( ( 𝑋𝐴𝐴 ∈ ( 𝐽 ×t 𝐽 ) ) → 𝑋 ( 𝐽 ×t 𝐽 ) )
5 4 ancoms ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋𝐴 ) → 𝑋 ( 𝐽 ×t 𝐽 ) )
6 1 tpr2uni ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ )
7 5 6 eleqtrdi ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋𝐴 ) → 𝑋 ∈ ( ℝ × ℝ ) )
8 eqid ( 𝑢 ∈ ℝ , 𝑣 ∈ ℝ ↦ ( 𝑢 + ( i · 𝑣 ) ) ) = ( 𝑢 ∈ ℝ , 𝑣 ∈ ℝ ↦ ( 𝑢 + ( i · 𝑣 ) ) )
9 eqid ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) = ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) )
10 1 8 9 tpr2rico ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋𝐴 ) → ∃ 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ( 𝑋𝑟𝑟𝐴 ) )
11 anass ( ( ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋𝑟 ) ∧ 𝑟𝐴 ) ↔ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ ( 𝑋𝑟𝑟𝐴 ) ) )
12 1 2 3 9 dya2iocnrect ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋𝑟 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) )
13 12 3expb ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋𝑟 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) )
14 13 anim1i ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋𝑟 ) ) ∧ 𝑟𝐴 ) → ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) )
15 14 anasss ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋𝑟 ) ∧ 𝑟𝐴 ) ) → ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) )
16 11 15 sylan2br ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ ( 𝑋𝑟𝑟𝐴 ) ) ) → ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) )
17 r19.41v ( ∃ 𝑏 ∈ ran 𝑅 ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) ↔ ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) )
18 simpll ( ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → 𝑋𝑏 )
19 simplr ( ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → 𝑏𝑟 )
20 simpr ( ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → 𝑟𝐴 )
21 19 20 sstrd ( ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → 𝑏𝐴 )
22 18 21 jca ( ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → ( 𝑋𝑏𝑏𝐴 ) )
23 22 reximi ( ∃ 𝑏 ∈ ran 𝑅 ( ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝐴 ) )
24 17 23 sylbir ( ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝑟 ) ∧ 𝑟𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝐴 ) )
25 16 24 syl ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ ( 𝑋𝑟𝑟𝐴 ) ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝐴 ) )
26 25 rexlimdvaa ( 𝑋 ∈ ( ℝ × ℝ ) → ( ∃ 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ( 𝑋𝑟𝑟𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝐴 ) ) )
27 7 10 26 sylc ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋𝑏𝑏𝐴 ) )