Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
3 |
|
dya2ioc.2 |
⊢ 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) |
4 |
|
elunii |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ) → 𝑋 ∈ ∪ ( 𝐽 ×t 𝐽 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ∪ ( 𝐽 ×t 𝐽 ) ) |
6 |
1
|
tpr2uni |
⊢ ∪ ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ ) |
7 |
5 6
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
8 |
|
eqid |
⊢ ( 𝑢 ∈ ℝ , 𝑣 ∈ ℝ ↦ ( 𝑢 + ( i · 𝑣 ) ) ) = ( 𝑢 ∈ ℝ , 𝑣 ∈ ℝ ↦ ( 𝑢 + ( i · 𝑣 ) ) ) |
9 |
|
eqid |
⊢ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) = ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) |
10 |
1 8 9
|
tpr2rico |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋 ∈ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ↔ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) ) |
12 |
1 2 3 9
|
dya2iocnrect |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋 ∈ 𝑟 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ) |
13 |
12
|
3expb |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋 ∈ 𝑟 ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ) |
14 |
13
|
anim1i |
⊢ ( ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋 ∈ 𝑟 ) ) ∧ 𝑟 ⊆ 𝐴 ) → ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ) |
15 |
14
|
anasss |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ 𝑋 ∈ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ) → ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ) |
16 |
11 15
|
sylan2br |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) ) → ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ) |
17 |
|
r19.41v |
⊢ ( ∃ 𝑏 ∈ ran 𝑅 ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ↔ ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → 𝑋 ∈ 𝑏 ) |
19 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → 𝑏 ⊆ 𝑟 ) |
20 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → 𝑟 ⊆ 𝐴 ) |
21 |
19 20
|
sstrd |
⊢ ( ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
22 |
18 21
|
jca |
⊢ ( ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
23 |
22
|
reximi |
⊢ ( ∃ 𝑏 ∈ ran 𝑅 ( ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
24 |
17 23
|
sylbir |
⊢ ( ( ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟 ) ∧ 𝑟 ⊆ 𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
25 |
16 24
|
syl |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ ( 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ∧ ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
26 |
25
|
rexlimdvaa |
⊢ ( 𝑋 ∈ ( ℝ × ℝ ) → ( ∃ 𝑟 ∈ ran ( 𝑒 ∈ ran (,) , 𝑓 ∈ ran (,) ↦ ( 𝑒 × 𝑓 ) ) ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) ) |
27 |
7 10 26
|
sylc |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑏 ∈ ran 𝑅 ( 𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |