| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpr2rico.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
tpr2rico.1 |
⊢ 𝐺 = ( 𝑢 ∈ ℝ , 𝑣 ∈ ℝ ↦ ( 𝑢 + ( i · 𝑣 ) ) ) |
| 3 |
|
tpr2rico.2 |
⊢ 𝐵 = ran ( 𝑥 ∈ ran (,) , 𝑦 ∈ ran (,) ↦ ( 𝑥 × 𝑦 ) ) |
| 4 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 5 |
4
|
ixxf |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 6 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → (,) Fn ( ℝ* × ℝ* ) ) |
| 7 |
5 6
|
mp1i |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → (,) Fn ( ℝ* × ℝ* ) ) |
| 8 |
|
elssuni |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → 𝐴 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 9 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 10 |
1 9
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 11 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 12 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 13 |
11 12
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
| 14 |
10 10 13 13
|
txunii |
⊢ ( ℝ × ℝ ) = ∪ ( 𝐽 ×t 𝐽 ) |
| 15 |
8 14
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → 𝐴 ⊆ ( ℝ × ℝ ) ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝐴 ⊆ ( ℝ × ℝ ) ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑋 ∈ 𝐴 ) |
| 18 |
16 17
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
| 19 |
|
xp1st |
⊢ ( 𝑋 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑋 ) ∈ ℝ ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 1st ‘ 𝑋 ) ∈ ℝ ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ+ ) |
| 22 |
21
|
rpred |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ ) |
| 23 |
22
|
rehalfcld |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 / 2 ) ∈ ℝ ) |
| 24 |
20 23
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ ) |
| 25 |
24
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* ) |
| 26 |
20 23
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ ) |
| 27 |
26
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* ) |
| 28 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* ∧ ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* ) → ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∈ ran (,) ) |
| 29 |
7 25 27 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∈ ran (,) ) |
| 30 |
|
xp2nd |
⊢ ( 𝑋 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑋 ) ∈ ℝ ) |
| 31 |
18 30
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 2nd ‘ 𝑋 ) ∈ ℝ ) |
| 32 |
31 23
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ ) |
| 33 |
32
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* ) |
| 34 |
31 23
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ ) |
| 35 |
34
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* ) |
| 36 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* ∧ ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* ) → ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∈ ran (,) ) |
| 37 |
7 33 35 36
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∈ ran (,) ) |
| 38 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 39 |
|
xpeq1 |
⊢ ( 𝑥 = ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) → ( 𝑥 × 𝑦 ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × 𝑦 ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑥 = ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) → ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( 𝑥 × 𝑦 ) ↔ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × 𝑦 ) ) ) |
| 41 |
|
xpeq2 |
⊢ ( 𝑦 = ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × 𝑦 ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑦 = ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) → ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × 𝑦 ) ↔ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) ) |
| 43 |
40 42
|
rspc2ev |
⊢ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∈ ran (,) ∧ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∈ ran (,) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑥 ∈ ran (,) ∃ 𝑦 ∈ ran (,) ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( 𝑥 × 𝑦 ) ) |
| 44 |
29 37 38 43
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ∃ 𝑥 ∈ ran (,) ∃ 𝑦 ∈ ran (,) ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( 𝑥 × 𝑦 ) ) |
| 45 |
|
eqid |
⊢ ( 𝑥 ∈ ran (,) , 𝑦 ∈ ran (,) ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ ran (,) , 𝑦 ∈ ran (,) ↦ ( 𝑥 × 𝑦 ) ) |
| 46 |
|
vex |
⊢ 𝑥 ∈ V |
| 47 |
|
vex |
⊢ 𝑦 ∈ V |
| 48 |
46 47
|
xpex |
⊢ ( 𝑥 × 𝑦 ) ∈ V |
| 49 |
45 48
|
elrnmpo |
⊢ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ ran ( 𝑥 ∈ ran (,) , 𝑦 ∈ ran (,) ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ ran (,) ∃ 𝑦 ∈ ran (,) ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) = ( 𝑥 × 𝑦 ) ) |
| 50 |
44 49
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ ran ( 𝑥 ∈ ran (,) , 𝑦 ∈ ran (,) ↦ ( 𝑥 × 𝑦 ) ) ) |
| 51 |
50 3
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ) |
| 52 |
51
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ) |
| 53 |
|
xpss |
⊢ ( ℝ × ℝ ) ⊆ ( V × V ) |
| 54 |
53 18
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑋 ∈ ( V × V ) ) |
| 55 |
20
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 1st ‘ 𝑋 ) ∈ ℝ* ) |
| 56 |
21
|
rphalfcld |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 / 2 ) ∈ ℝ+ ) |
| 57 |
20 56
|
ltsubrpd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) < ( 1st ‘ 𝑋 ) ) |
| 58 |
20 56
|
ltaddrpd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 1st ‘ 𝑋 ) < ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) |
| 59 |
|
elioo1 |
⊢ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* ∧ ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* ) → ( ( 1st ‘ 𝑋 ) ∈ ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ↔ ( ( 1st ‘ 𝑋 ) ∈ ℝ* ∧ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) < ( 1st ‘ 𝑋 ) ∧ ( 1st ‘ 𝑋 ) < ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 60 |
25 27 59
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) ∈ ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ↔ ( ( 1st ‘ 𝑋 ) ∈ ℝ* ∧ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) < ( 1st ‘ 𝑋 ) ∧ ( 1st ‘ 𝑋 ) < ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 61 |
55 57 58 60
|
mpbir3and |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 1st ‘ 𝑋 ) ∈ ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) |
| 62 |
31
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 2nd ‘ 𝑋 ) ∈ ℝ* ) |
| 63 |
31 56
|
ltsubrpd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) < ( 2nd ‘ 𝑋 ) ) |
| 64 |
31 56
|
ltaddrpd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 2nd ‘ 𝑋 ) < ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) |
| 65 |
|
elioo1 |
⊢ ( ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* ∧ ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* ) → ( ( 2nd ‘ 𝑋 ) ∈ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ↔ ( ( 2nd ‘ 𝑋 ) ∈ ℝ* ∧ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) < ( 2nd ‘ 𝑋 ) ∧ ( 2nd ‘ 𝑋 ) < ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 66 |
33 35 65
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) ∈ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ↔ ( ( 2nd ‘ 𝑋 ) ∈ ℝ* ∧ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) < ( 2nd ‘ 𝑋 ) ∧ ( 2nd ‘ 𝑋 ) < ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 67 |
62 63 64 66
|
mpbir3and |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 2nd ‘ 𝑋 ) ∈ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) |
| 68 |
61 67
|
jca |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) ∈ ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∧ ( 2nd ‘ 𝑋 ) ∈ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 69 |
|
elxp7 |
⊢ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ↔ ( 𝑋 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑋 ) ∈ ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ∧ ( 2nd ‘ 𝑋 ) ∈ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) ) |
| 70 |
54 68 69
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 71 |
70
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑑 ∈ ℝ+ 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 72 |
|
mnfle |
⊢ ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* → -∞ ≤ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ) |
| 73 |
25 72
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → -∞ ≤ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ) |
| 74 |
|
pnfge |
⊢ ( ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* → ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) |
| 75 |
27 74
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) |
| 76 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 77 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 78 |
|
ioossioo |
⊢ ( ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ≤ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∧ ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) ) → ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ( -∞ (,) +∞ ) ) |
| 79 |
76 77 78
|
mpanl12 |
⊢ ( ( -∞ ≤ ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∧ ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) → ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ( -∞ (,) +∞ ) ) |
| 80 |
73 75 79
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ( -∞ (,) +∞ ) ) |
| 81 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
| 82 |
80 81
|
sseqtrdi |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ℝ ) |
| 83 |
|
mnfle |
⊢ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∈ ℝ* → -∞ ≤ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ) |
| 84 |
33 83
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → -∞ ≤ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ) |
| 85 |
|
pnfge |
⊢ ( ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ∈ ℝ* → ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) |
| 86 |
35 85
|
syl |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) |
| 87 |
|
ioossioo |
⊢ ( ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ≤ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∧ ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) ) → ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ( -∞ (,) +∞ ) ) |
| 88 |
76 77 87
|
mpanl12 |
⊢ ( ( -∞ ≤ ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) ∧ ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ≤ +∞ ) → ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ( -∞ (,) +∞ ) ) |
| 89 |
84 86 88
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ( -∞ (,) +∞ ) ) |
| 90 |
89 81
|
sseqtrdi |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ℝ ) |
| 91 |
|
xpss12 |
⊢ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ℝ ∧ ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ⊆ ℝ ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ℝ × ℝ ) ) |
| 92 |
82 90 91
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ℝ × ℝ ) ) |
| 93 |
92
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) → 𝑥 ∈ ( ℝ × ℝ ) ) |
| 94 |
93
|
expcom |
⊢ ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝑥 ∈ ( ℝ × ℝ ) ) ) |
| 95 |
94
|
ancld |
⊢ ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ) ) |
| 96 |
95
|
imdistanri |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) → ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) ) |
| 97 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑑 ∈ ℝ+ ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ) → 𝐴 ⊆ ( ℝ × ℝ ) ) |
| 98 |
|
simpr1 |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑑 ∈ ℝ+ ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ) → 𝑋 ∈ 𝐴 ) |
| 99 |
97 98
|
sseldd |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑑 ∈ ℝ+ ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
| 100 |
99
|
3anassrs |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
| 101 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → 𝑥 ∈ ( ℝ × ℝ ) ) |
| 102 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → 𝑑 ∈ ℝ+ ) |
| 103 |
102
|
rphalfcld |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝑑 / 2 ) ∈ ℝ+ ) |
| 104 |
2
|
cnre2csqima |
⊢ ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ∧ ( 𝑑 / 2 ) ∈ ℝ+ ) → ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) ) ) |
| 105 |
100 101 103 104
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) ) ) |
| 106 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 107 |
2 1 106
|
cnrehmeo |
⊢ 𝐺 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo ( TopOpen ‘ ℂfld ) ) |
| 108 |
106
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 109 |
108
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 110 |
14 109
|
hmeof1o |
⊢ ( 𝐺 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo ( TopOpen ‘ ℂfld ) ) → 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ ) |
| 111 |
|
f1of |
⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐺 : ( ℝ × ℝ ) ⟶ ℂ ) |
| 112 |
107 110 111
|
mp2b |
⊢ 𝐺 : ( ℝ × ℝ ) ⟶ ℂ |
| 113 |
112
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → 𝐺 : ( ℝ × ℝ ) ⟶ ℂ ) |
| 114 |
113 100
|
ffvelcdmd |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
| 115 |
112
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → 𝐺 : ( ℝ × ℝ ) ⟶ ℂ ) |
| 116 |
115
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 117 |
|
sqsscirc2 |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) ) |
| 118 |
114 116 102 117
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) ) |
| 119 |
118
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) |
| 120 |
102
|
rpxrd |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → 𝑑 ∈ ℝ* ) |
| 121 |
120
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → 𝑑 ∈ ℝ* ) |
| 122 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 123 |
121 122
|
jctil |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑑 ∈ ℝ* ) ) |
| 124 |
114
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
| 125 |
116
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 126 |
124 125
|
jca |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) ) |
| 127 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 128 |
127
|
cnmetdval |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) → ( ( 𝐺 ‘ 𝑥 ) ( abs ∘ − ) ( 𝐺 ‘ 𝑋 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 129 |
125 124 128
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( ( 𝐺 ‘ 𝑥 ) ( abs ∘ − ) ( 𝐺 ‘ 𝑋 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 130 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) |
| 131 |
129 130
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( ( 𝐺 ‘ 𝑥 ) ( abs ∘ − ) ( 𝐺 ‘ 𝑋 ) ) < 𝑑 ) |
| 132 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑑 ∈ ℝ* ) ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ↔ ( ( 𝐺 ‘ 𝑥 ) ( abs ∘ − ) ( 𝐺 ‘ 𝑋 ) ) < 𝑑 ) ) |
| 133 |
132
|
biimpar |
⊢ ( ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑑 ∈ ℝ* ) ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) ) ∧ ( ( 𝐺 ‘ 𝑥 ) ( abs ∘ − ) ( 𝐺 ‘ 𝑋 ) ) < 𝑑 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) |
| 134 |
123 126 131 133
|
syl21anc |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) < 𝑑 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) |
| 135 |
119 134
|
syldan |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) |
| 136 |
135
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ( ( abs ‘ ( ℜ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) < ( 𝑑 / 2 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) |
| 137 |
105 136
|
syld |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) |
| 138 |
|
f1ocnv |
⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) ) |
| 139 |
107 110 138
|
mp2b |
⊢ ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) |
| 140 |
|
f1ofun |
⊢ ( ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) → Fun ◡ 𝐺 ) |
| 141 |
139 140
|
ax-mp |
⊢ Fun ◡ 𝐺 |
| 142 |
|
f1odm |
⊢ ( ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) → dom ◡ 𝐺 = ℂ ) |
| 143 |
139 142
|
ax-mp |
⊢ dom ◡ 𝐺 = ℂ |
| 144 |
116 143
|
eleqtrrdi |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝐺 ‘ 𝑥 ) ∈ dom ◡ 𝐺 ) |
| 145 |
|
funfvima |
⊢ ( ( Fun ◡ 𝐺 ∧ ( 𝐺 ‘ 𝑥 ) ∈ dom ◡ 𝐺 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) ) |
| 146 |
141 144 145
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) ) |
| 147 |
107 110
|
mp1i |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ ) |
| 148 |
|
f1ocnvfv1 |
⊢ ( ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
| 149 |
147 101 148
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
| 150 |
149
|
eleq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ( ◡ 𝐺 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ↔ 𝑥 ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) ) |
| 151 |
150
|
biimpd |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( ( ◡ 𝐺 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) ) |
| 152 |
137 146 151
|
3syld |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) → ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) ) |
| 153 |
152
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) |
| 154 |
96 153
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) |
| 155 |
154
|
ex |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → 𝑥 ∈ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) ) |
| 156 |
155
|
ssrdv |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) |
| 157 |
156
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ) |
| 158 |
2
|
mpofun |
⊢ Fun 𝐺 |
| 159 |
158
|
a1i |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → Fun 𝐺 ) |
| 160 |
15
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( ℝ × ℝ ) ) |
| 161 |
|
f1odm |
⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → dom 𝐺 = ( ℝ × ℝ ) ) |
| 162 |
107 110 161
|
mp2b |
⊢ dom 𝐺 = ( ℝ × ℝ ) |
| 163 |
160 162
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ dom 𝐺 ) |
| 164 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
| 165 |
|
funfvima |
⊢ ( ( Fun 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) → ( 𝑋 ∈ 𝐴 → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 “ 𝐴 ) ) ) |
| 166 |
165
|
imp |
⊢ ( ( ( Fun 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 “ 𝐴 ) ) |
| 167 |
159 163 164 166
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 “ 𝐴 ) ) |
| 168 |
|
hmeoima |
⊢ ( ( 𝐺 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo ( TopOpen ‘ ℂfld ) ) ∧ 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ) → ( 𝐺 “ 𝐴 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 169 |
107 168
|
mpan |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ( 𝐺 “ 𝐴 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 170 |
106
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 171 |
170
|
elmopn2 |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( ( 𝐺 “ 𝐴 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( 𝐺 “ 𝐴 ) ⊆ ℂ ∧ ∀ 𝑚 ∈ ( 𝐺 “ 𝐴 ) ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) ) ) |
| 172 |
122 171
|
ax-mp |
⊢ ( ( 𝐺 “ 𝐴 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( 𝐺 “ 𝐴 ) ⊆ ℂ ∧ ∀ 𝑚 ∈ ( 𝐺 “ 𝐴 ) ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) ) |
| 173 |
172
|
simprbi |
⊢ ( ( 𝐺 “ 𝐴 ) ∈ ( TopOpen ‘ ℂfld ) → ∀ 𝑚 ∈ ( 𝐺 “ 𝐴 ) ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) |
| 174 |
169 173
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ∀ 𝑚 ∈ ( 𝐺 “ 𝐴 ) ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑚 ∈ ( 𝐺 “ 𝐴 ) ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) |
| 176 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑋 ) → ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) = ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) |
| 177 |
176
|
sseq1d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑋 ) → ( ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ↔ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) ) |
| 178 |
177
|
rexbidv |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ↔ ∃ 𝑑 ∈ ℝ+ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) ) |
| 179 |
178
|
rspcva |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 “ 𝐴 ) ∧ ∀ 𝑚 ∈ ( 𝐺 “ 𝐴 ) ∃ 𝑑 ∈ ℝ+ ( 𝑚 ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) → ∃ 𝑑 ∈ ℝ+ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) |
| 180 |
167 175 179
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) ) |
| 181 |
|
imass2 |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) → ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ ( ◡ 𝐺 “ ( 𝐺 “ 𝐴 ) ) ) |
| 182 |
|
f1of1 |
⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐺 : ( ℝ × ℝ ) –1-1→ ℂ ) |
| 183 |
107 110 182
|
mp2b |
⊢ 𝐺 : ( ℝ × ℝ ) –1-1→ ℂ |
| 184 |
|
f1imacnv |
⊢ ( ( 𝐺 : ( ℝ × ℝ ) –1-1→ ℂ ∧ 𝐴 ⊆ ( ℝ × ℝ ) ) → ( ◡ 𝐺 “ ( 𝐺 “ 𝐴 ) ) = 𝐴 ) |
| 185 |
183 15 184
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ( ◡ 𝐺 “ ( 𝐺 “ 𝐴 ) ) = 𝐴 ) |
| 186 |
185
|
sseq2d |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ( ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ ( ◡ 𝐺 “ ( 𝐺 “ 𝐴 ) ) ↔ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) ) |
| 187 |
181 186
|
imbitrid |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ( ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) → ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) ) |
| 188 |
187
|
reximdv |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ( ∃ 𝑑 ∈ ℝ+ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) ) |
| 189 |
188
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑑 ∈ ℝ+ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ⊆ ( 𝐺 “ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) ) |
| 190 |
180 189
|
mpd |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) |
| 191 |
|
r19.29 |
⊢ ( ( ∀ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ∧ ∃ 𝑑 ∈ ℝ+ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ∧ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) ) |
| 192 |
157 190 191
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ∧ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) ) |
| 193 |
|
sstr |
⊢ ( ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ∧ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) → ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) |
| 194 |
193
|
reximi |
⊢ ( ∃ 𝑑 ∈ ℝ+ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ∧ ( ◡ 𝐺 “ ( ( 𝐺 ‘ 𝑋 ) ( ball ‘ ( abs ∘ − ) ) 𝑑 ) ) ⊆ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) |
| 195 |
192 194
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) |
| 196 |
|
r19.29 |
⊢ ( ( ∀ 𝑑 ∈ ℝ+ 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ∃ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) |
| 197 |
71 195 196
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) |
| 198 |
|
r19.29 |
⊢ ( ( ∀ 𝑑 ∈ ℝ+ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ∧ ∃ 𝑑 ∈ ℝ+ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) → ∃ 𝑑 ∈ ℝ+ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ∧ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) ) |
| 199 |
52 197 198
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑑 ∈ ℝ+ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ∧ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) ) |
| 200 |
|
eleq2 |
⊢ ( 𝑟 = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( 𝑋 ∈ 𝑟 ↔ 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ) ) |
| 201 |
|
sseq1 |
⊢ ( 𝑟 = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( 𝑟 ⊆ 𝐴 ↔ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) |
| 202 |
200 201
|
anbi12d |
⊢ ( 𝑟 = ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) → ( ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ↔ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) ) |
| 203 |
202
|
rspcev |
⊢ ( ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ∧ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) |
| 204 |
203
|
rexlimivw |
⊢ ( ∃ 𝑑 ∈ ℝ+ ( ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∈ 𝐵 ∧ ( 𝑋 ∈ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ∧ ( ( ( ( 1st ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 1st ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) × ( ( ( 2nd ‘ 𝑋 ) − ( 𝑑 / 2 ) ) (,) ( ( 2nd ‘ 𝑋 ) + ( 𝑑 / 2 ) ) ) ) ⊆ 𝐴 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) |
| 205 |
199 204
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴 ) ) |