| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpr2rico.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
tpr2rico.1 |
|- G = ( u e. RR , v e. RR |-> ( u + ( _i x. v ) ) ) |
| 3 |
|
tpr2rico.2 |
|- B = ran ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) |
| 4 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
| 5 |
4
|
ixxf |
|- (,) : ( RR* X. RR* ) --> ~P RR* |
| 6 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR* -> (,) Fn ( RR* X. RR* ) ) |
| 7 |
5 6
|
mp1i |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> (,) Fn ( RR* X. RR* ) ) |
| 8 |
|
elssuni |
|- ( A e. ( J tX J ) -> A C_ U. ( J tX J ) ) |
| 9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 10 |
1 9
|
eqeltri |
|- J e. Top |
| 11 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 12 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
| 13 |
11 12
|
eqtr4i |
|- RR = U. J |
| 14 |
10 10 13 13
|
txunii |
|- ( RR X. RR ) = U. ( J tX J ) |
| 15 |
8 14
|
sseqtrrdi |
|- ( A e. ( J tX J ) -> A C_ ( RR X. RR ) ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> A C_ ( RR X. RR ) ) |
| 17 |
|
simplr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. A ) |
| 18 |
16 17
|
sseldd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. ( RR X. RR ) ) |
| 19 |
|
xp1st |
|- ( X e. ( RR X. RR ) -> ( 1st ` X ) e. RR ) |
| 20 |
18 19
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) e. RR ) |
| 21 |
|
simpr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> d e. RR+ ) |
| 22 |
21
|
rpred |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> d e. RR ) |
| 23 |
22
|
rehalfcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( d / 2 ) e. RR ) |
| 24 |
20 23
|
resubcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) - ( d / 2 ) ) e. RR ) |
| 25 |
24
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) - ( d / 2 ) ) e. RR* ) |
| 26 |
20 23
|
readdcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) + ( d / 2 ) ) e. RR ) |
| 27 |
26
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) + ( d / 2 ) ) e. RR* ) |
| 28 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( ( 1st ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 1st ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
| 29 |
7 25 27 28
|
syl3anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
| 30 |
|
xp2nd |
|- ( X e. ( RR X. RR ) -> ( 2nd ` X ) e. RR ) |
| 31 |
18 30
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) e. RR ) |
| 32 |
31 23
|
resubcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) - ( d / 2 ) ) e. RR ) |
| 33 |
32
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* ) |
| 34 |
31 23
|
readdcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) + ( d / 2 ) ) e. RR ) |
| 35 |
34
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* ) |
| 36 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
| 37 |
7 33 35 36
|
syl3anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
| 38 |
|
eqidd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 39 |
|
xpeq1 |
|- ( x = ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) -> ( x X. y ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) ) |
| 40 |
39
|
eqeq2d |
|- ( x = ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) -> ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) <-> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) ) ) |
| 41 |
|
xpeq2 |
|- ( y = ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 42 |
41
|
eqeq2d |
|- ( y = ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) -> ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) <-> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
| 43 |
40 42
|
rspc2ev |
|- ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) e. ran (,) /\ ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) e. ran (,) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> E. x e. ran (,) E. y e. ran (,) ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) ) |
| 44 |
29 37 38 43
|
syl3anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> E. x e. ran (,) E. y e. ran (,) ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) ) |
| 45 |
|
eqid |
|- ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) = ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) |
| 46 |
|
vex |
|- x e. _V |
| 47 |
|
vex |
|- y e. _V |
| 48 |
46 47
|
xpex |
|- ( x X. y ) e. _V |
| 49 |
45 48
|
elrnmpo |
|- ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. ran ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) <-> E. x e. ran (,) E. y e. ran (,) ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) ) |
| 50 |
44 49
|
sylibr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. ran ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) ) |
| 51 |
50 3
|
eleqtrrdi |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B ) |
| 52 |
51
|
ralrimiva |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B ) |
| 53 |
|
xpss |
|- ( RR X. RR ) C_ ( _V X. _V ) |
| 54 |
53 18
|
sselid |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. ( _V X. _V ) ) |
| 55 |
20
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) e. RR* ) |
| 56 |
21
|
rphalfcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( d / 2 ) e. RR+ ) |
| 57 |
20 56
|
ltsubrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) - ( d / 2 ) ) < ( 1st ` X ) ) |
| 58 |
20 56
|
ltaddrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) < ( ( 1st ` X ) + ( d / 2 ) ) ) |
| 59 |
|
elioo1 |
|- ( ( ( ( 1st ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 1st ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) <-> ( ( 1st ` X ) e. RR* /\ ( ( 1st ` X ) - ( d / 2 ) ) < ( 1st ` X ) /\ ( 1st ` X ) < ( ( 1st ` X ) + ( d / 2 ) ) ) ) ) |
| 60 |
25 27 59
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) <-> ( ( 1st ` X ) e. RR* /\ ( ( 1st ` X ) - ( d / 2 ) ) < ( 1st ` X ) /\ ( 1st ` X ) < ( ( 1st ` X ) + ( d / 2 ) ) ) ) ) |
| 61 |
55 57 58 60
|
mpbir3and |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) ) |
| 62 |
31
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) e. RR* ) |
| 63 |
31 56
|
ltsubrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) - ( d / 2 ) ) < ( 2nd ` X ) ) |
| 64 |
31 56
|
ltaddrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) < ( ( 2nd ` X ) + ( d / 2 ) ) ) |
| 65 |
|
elioo1 |
|- ( ( ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) <-> ( ( 2nd ` X ) e. RR* /\ ( ( 2nd ` X ) - ( d / 2 ) ) < ( 2nd ` X ) /\ ( 2nd ` X ) < ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 66 |
33 35 65
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) <-> ( ( 2nd ` X ) e. RR* /\ ( ( 2nd ` X ) - ( d / 2 ) ) < ( 2nd ` X ) /\ ( 2nd ` X ) < ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 67 |
62 63 64 66
|
mpbir3and |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) |
| 68 |
61 67
|
jca |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) /\ ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 69 |
|
elxp7 |
|- ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) <-> ( X e. ( _V X. _V ) /\ ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) /\ ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
| 70 |
54 68 69
|
sylanbrc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 71 |
70
|
ralrimiva |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. d e. RR+ X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
| 72 |
|
mnfle |
|- ( ( ( 1st ` X ) - ( d / 2 ) ) e. RR* -> -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) ) |
| 73 |
25 72
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) ) |
| 74 |
|
pnfge |
|- ( ( ( 1st ` X ) + ( d / 2 ) ) e. RR* -> ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) |
| 75 |
27 74
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) |
| 76 |
|
mnfxr |
|- -oo e. RR* |
| 77 |
|
pnfxr |
|- +oo e. RR* |
| 78 |
|
ioossioo |
|- ( ( ( -oo e. RR* /\ +oo e. RR* ) /\ ( -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) /\ ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
| 79 |
76 77 78
|
mpanl12 |
|- ( ( -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) /\ ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
| 80 |
73 75 79
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
| 81 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
| 82 |
80 81
|
sseqtrdi |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ RR ) |
| 83 |
|
mnfle |
|- ( ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* -> -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) ) |
| 84 |
33 83
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) ) |
| 85 |
|
pnfge |
|- ( ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* -> ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) |
| 86 |
35 85
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) |
| 87 |
|
ioossioo |
|- ( ( ( -oo e. RR* /\ +oo e. RR* ) /\ ( -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) /\ ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
| 88 |
76 77 87
|
mpanl12 |
|- ( ( -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) /\ ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
| 89 |
84 86 88
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
| 90 |
89 81
|
sseqtrdi |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ RR ) |
| 91 |
|
xpss12 |
|- ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ RR /\ ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ RR ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( RR X. RR ) ) |
| 92 |
82 90 91
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( RR X. RR ) ) |
| 93 |
92
|
sselda |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> x e. ( RR X. RR ) ) |
| 94 |
93
|
expcom |
|- ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> x e. ( RR X. RR ) ) ) |
| 95 |
94
|
ancld |
|- ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) ) ) |
| 96 |
95
|
imdistanri |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
| 97 |
15
|
adantr |
|- ( ( A e. ( J tX J ) /\ ( X e. A /\ d e. RR+ /\ x e. ( RR X. RR ) ) ) -> A C_ ( RR X. RR ) ) |
| 98 |
|
simpr1 |
|- ( ( A e. ( J tX J ) /\ ( X e. A /\ d e. RR+ /\ x e. ( RR X. RR ) ) ) -> X e. A ) |
| 99 |
97 98
|
sseldd |
|- ( ( A e. ( J tX J ) /\ ( X e. A /\ d e. RR+ /\ x e. ( RR X. RR ) ) ) -> X e. ( RR X. RR ) ) |
| 100 |
99
|
3anassrs |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> X e. ( RR X. RR ) ) |
| 101 |
|
simpr |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> x e. ( RR X. RR ) ) |
| 102 |
|
simplr |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> d e. RR+ ) |
| 103 |
102
|
rphalfcld |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( d / 2 ) e. RR+ ) |
| 104 |
2
|
cnre2csqima |
|- ( ( X e. ( RR X. RR ) /\ x e. ( RR X. RR ) /\ ( d / 2 ) e. RR+ ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) ) |
| 105 |
100 101 103 104
|
syl3anc |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) ) |
| 106 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 107 |
2 1 106
|
cnrehmeo |
|- G e. ( ( J tX J ) Homeo ( TopOpen ` CCfld ) ) |
| 108 |
106
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 109 |
108
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
| 110 |
14 109
|
hmeof1o |
|- ( G e. ( ( J tX J ) Homeo ( TopOpen ` CCfld ) ) -> G : ( RR X. RR ) -1-1-onto-> CC ) |
| 111 |
|
f1of |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> G : ( RR X. RR ) --> CC ) |
| 112 |
107 110 111
|
mp2b |
|- G : ( RR X. RR ) --> CC |
| 113 |
112
|
a1i |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> G : ( RR X. RR ) --> CC ) |
| 114 |
113 100
|
ffvelcdmd |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( G ` X ) e. CC ) |
| 115 |
112
|
a1i |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> G : ( RR X. RR ) --> CC ) |
| 116 |
115
|
ffvelcdmda |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( G ` x ) e. CC ) |
| 117 |
|
sqsscirc2 |
|- ( ( ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) /\ d e. RR+ ) -> ( ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) ) |
| 118 |
114 116 102 117
|
syl21anc |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) ) |
| 119 |
118
|
imp |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) |
| 120 |
102
|
rpxrd |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> d e. RR* ) |
| 121 |
120
|
adantr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> d e. RR* ) |
| 122 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 123 |
121 122
|
jctil |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( abs o. - ) e. ( *Met ` CC ) /\ d e. RR* ) ) |
| 124 |
114
|
adantr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( G ` X ) e. CC ) |
| 125 |
116
|
adantr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( G ` x ) e. CC ) |
| 126 |
124 125
|
jca |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) ) |
| 127 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 128 |
127
|
cnmetdval |
|- ( ( ( G ` x ) e. CC /\ ( G ` X ) e. CC ) -> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) = ( abs ` ( ( G ` x ) - ( G ` X ) ) ) ) |
| 129 |
125 124 128
|
syl2anc |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) = ( abs ` ( ( G ` x ) - ( G ` X ) ) ) ) |
| 130 |
|
simpr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) |
| 131 |
129 130
|
eqbrtrd |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) < d ) |
| 132 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ d e. RR* ) /\ ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) ) -> ( ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) <-> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) < d ) ) |
| 133 |
132
|
biimpar |
|- ( ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ d e. RR* ) /\ ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) ) /\ ( ( G ` x ) ( abs o. - ) ( G ` X ) ) < d ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
| 134 |
123 126 131 133
|
syl21anc |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
| 135 |
119 134
|
syldan |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
| 136 |
135
|
ex |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
| 137 |
105 136
|
syld |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
| 138 |
|
f1ocnv |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> `' G : CC -1-1-onto-> ( RR X. RR ) ) |
| 139 |
107 110 138
|
mp2b |
|- `' G : CC -1-1-onto-> ( RR X. RR ) |
| 140 |
|
f1ofun |
|- ( `' G : CC -1-1-onto-> ( RR X. RR ) -> Fun `' G ) |
| 141 |
139 140
|
ax-mp |
|- Fun `' G |
| 142 |
|
f1odm |
|- ( `' G : CC -1-1-onto-> ( RR X. RR ) -> dom `' G = CC ) |
| 143 |
139 142
|
ax-mp |
|- dom `' G = CC |
| 144 |
116 143
|
eleqtrrdi |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( G ` x ) e. dom `' G ) |
| 145 |
|
funfvima |
|- ( ( Fun `' G /\ ( G ` x ) e. dom `' G ) -> ( ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) -> ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
| 146 |
141 144 145
|
sylancr |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) -> ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
| 147 |
107 110
|
mp1i |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> G : ( RR X. RR ) -1-1-onto-> CC ) |
| 148 |
|
f1ocnvfv1 |
|- ( ( G : ( RR X. RR ) -1-1-onto-> CC /\ x e. ( RR X. RR ) ) -> ( `' G ` ( G ` x ) ) = x ) |
| 149 |
147 101 148
|
syl2anc |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( `' G ` ( G ` x ) ) = x ) |
| 150 |
149
|
eleq1d |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) <-> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
| 151 |
150
|
biimpd |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
| 152 |
137 146 151
|
3syld |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
| 153 |
152
|
imp |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
| 154 |
96 153
|
syl |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
| 155 |
154
|
ex |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
| 156 |
155
|
ssrdv |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
| 157 |
156
|
ralrimiva |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
| 158 |
2
|
mpofun |
|- Fun G |
| 159 |
158
|
a1i |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> Fun G ) |
| 160 |
15
|
sselda |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. ( RR X. RR ) ) |
| 161 |
|
f1odm |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> dom G = ( RR X. RR ) ) |
| 162 |
107 110 161
|
mp2b |
|- dom G = ( RR X. RR ) |
| 163 |
160 162
|
eleqtrrdi |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. dom G ) |
| 164 |
|
simpr |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. A ) |
| 165 |
|
funfvima |
|- ( ( Fun G /\ X e. dom G ) -> ( X e. A -> ( G ` X ) e. ( G " A ) ) ) |
| 166 |
165
|
imp |
|- ( ( ( Fun G /\ X e. dom G ) /\ X e. A ) -> ( G ` X ) e. ( G " A ) ) |
| 167 |
159 163 164 166
|
syl21anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> ( G ` X ) e. ( G " A ) ) |
| 168 |
|
hmeoima |
|- ( ( G e. ( ( J tX J ) Homeo ( TopOpen ` CCfld ) ) /\ A e. ( J tX J ) ) -> ( G " A ) e. ( TopOpen ` CCfld ) ) |
| 169 |
107 168
|
mpan |
|- ( A e. ( J tX J ) -> ( G " A ) e. ( TopOpen ` CCfld ) ) |
| 170 |
106
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 171 |
170
|
elmopn2 |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( ( G " A ) e. ( TopOpen ` CCfld ) <-> ( ( G " A ) C_ CC /\ A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) ) |
| 172 |
122 171
|
ax-mp |
|- ( ( G " A ) e. ( TopOpen ` CCfld ) <-> ( ( G " A ) C_ CC /\ A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) |
| 173 |
172
|
simprbi |
|- ( ( G " A ) e. ( TopOpen ` CCfld ) -> A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
| 174 |
169 173
|
syl |
|- ( A e. ( J tX J ) -> A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
| 175 |
174
|
adantr |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
| 176 |
|
oveq1 |
|- ( m = ( G ` X ) -> ( m ( ball ` ( abs o. - ) ) d ) = ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
| 177 |
176
|
sseq1d |
|- ( m = ( G ` X ) -> ( ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) <-> ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) |
| 178 |
177
|
rexbidv |
|- ( m = ( G ` X ) -> ( E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) <-> E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) |
| 179 |
178
|
rspcva |
|- ( ( ( G ` X ) e. ( G " A ) /\ A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) -> E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
| 180 |
167 175 179
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
| 181 |
|
imass2 |
|- ( ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ ( `' G " ( G " A ) ) ) |
| 182 |
|
f1of1 |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> G : ( RR X. RR ) -1-1-> CC ) |
| 183 |
107 110 182
|
mp2b |
|- G : ( RR X. RR ) -1-1-> CC |
| 184 |
|
f1imacnv |
|- ( ( G : ( RR X. RR ) -1-1-> CC /\ A C_ ( RR X. RR ) ) -> ( `' G " ( G " A ) ) = A ) |
| 185 |
183 15 184
|
sylancr |
|- ( A e. ( J tX J ) -> ( `' G " ( G " A ) ) = A ) |
| 186 |
185
|
sseq2d |
|- ( A e. ( J tX J ) -> ( ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ ( `' G " ( G " A ) ) <-> ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
| 187 |
181 186
|
imbitrid |
|- ( A e. ( J tX J ) -> ( ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
| 188 |
187
|
reximdv |
|- ( A e. ( J tX J ) -> ( E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
| 189 |
188
|
adantr |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> ( E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
| 190 |
180 189
|
mpd |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) |
| 191 |
|
r19.29 |
|- ( ( A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
| 192 |
157 190 191
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
| 193 |
|
sstr |
|- ( ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) |
| 194 |
193
|
reximi |
|- ( E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) -> E. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) |
| 195 |
192 194
|
syl |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) |
| 196 |
|
r19.29 |
|- ( ( A. d e. RR+ X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ E. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) -> E. d e. RR+ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) |
| 197 |
71 195 196
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) |
| 198 |
|
r19.29 |
|- ( ( A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ E. d e. RR+ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) ) |
| 199 |
52 197 198
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) ) |
| 200 |
|
eleq2 |
|- ( r = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( X e. r <-> X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
| 201 |
|
sseq1 |
|- ( r = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( r C_ A <-> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) |
| 202 |
200 201
|
anbi12d |
|- ( r = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( X e. r /\ r C_ A ) <-> ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) ) |
| 203 |
202
|
rspcev |
|- ( ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) -> E. r e. B ( X e. r /\ r C_ A ) ) |
| 204 |
203
|
rexlimivw |
|- ( E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) -> E. r e. B ( X e. r /\ r C_ A ) ) |
| 205 |
199 204
|
syl |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. r e. B ( X e. r /\ r C_ A ) ) |