Step |
Hyp |
Ref |
Expression |
1 |
|
tpr2rico.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
tpr2rico.1 |
|- G = ( u e. RR , v e. RR |-> ( u + ( _i x. v ) ) ) |
3 |
|
tpr2rico.2 |
|- B = ran ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) |
4 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
5 |
4
|
ixxf |
|- (,) : ( RR* X. RR* ) --> ~P RR* |
6 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR* -> (,) Fn ( RR* X. RR* ) ) |
7 |
5 6
|
mp1i |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> (,) Fn ( RR* X. RR* ) ) |
8 |
|
elssuni |
|- ( A e. ( J tX J ) -> A C_ U. ( J tX J ) ) |
9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
10 |
1 9
|
eqeltri |
|- J e. Top |
11 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
12 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
13 |
11 12
|
eqtr4i |
|- RR = U. J |
14 |
10 10 13 13
|
txunii |
|- ( RR X. RR ) = U. ( J tX J ) |
15 |
8 14
|
sseqtrrdi |
|- ( A e. ( J tX J ) -> A C_ ( RR X. RR ) ) |
16 |
15
|
ad2antrr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> A C_ ( RR X. RR ) ) |
17 |
|
simplr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. A ) |
18 |
16 17
|
sseldd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. ( RR X. RR ) ) |
19 |
|
xp1st |
|- ( X e. ( RR X. RR ) -> ( 1st ` X ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) e. RR ) |
21 |
|
simpr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> d e. RR+ ) |
22 |
21
|
rpred |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> d e. RR ) |
23 |
22
|
rehalfcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( d / 2 ) e. RR ) |
24 |
20 23
|
resubcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) - ( d / 2 ) ) e. RR ) |
25 |
24
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) - ( d / 2 ) ) e. RR* ) |
26 |
20 23
|
readdcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) + ( d / 2 ) ) e. RR ) |
27 |
26
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) + ( d / 2 ) ) e. RR* ) |
28 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( ( 1st ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 1st ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
29 |
7 25 27 28
|
syl3anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
30 |
|
xp2nd |
|- ( X e. ( RR X. RR ) -> ( 2nd ` X ) e. RR ) |
31 |
18 30
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) e. RR ) |
32 |
31 23
|
resubcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) - ( d / 2 ) ) e. RR ) |
33 |
32
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* ) |
34 |
31 23
|
readdcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) + ( d / 2 ) ) e. RR ) |
35 |
34
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* ) |
36 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
37 |
7 33 35 36
|
syl3anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) e. ran (,) ) |
38 |
|
eqidd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
39 |
|
xpeq1 |
|- ( x = ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) -> ( x X. y ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) ) |
40 |
39
|
eqeq2d |
|- ( x = ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) -> ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) <-> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) ) ) |
41 |
|
xpeq2 |
|- ( y = ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
42 |
41
|
eqeq2d |
|- ( y = ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) -> ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. y ) <-> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
43 |
40 42
|
rspc2ev |
|- ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) e. ran (,) /\ ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) e. ran (,) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> E. x e. ran (,) E. y e. ran (,) ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) ) |
44 |
29 37 38 43
|
syl3anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> E. x e. ran (,) E. y e. ran (,) ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) ) |
45 |
|
eqid |
|- ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) = ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) |
46 |
|
vex |
|- x e. _V |
47 |
|
vex |
|- y e. _V |
48 |
46 47
|
xpex |
|- ( x X. y ) e. _V |
49 |
45 48
|
elrnmpo |
|- ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. ran ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) <-> E. x e. ran (,) E. y e. ran (,) ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) = ( x X. y ) ) |
50 |
44 49
|
sylibr |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. ran ( x e. ran (,) , y e. ran (,) |-> ( x X. y ) ) ) |
51 |
50 3
|
eleqtrrdi |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B ) |
52 |
51
|
ralrimiva |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B ) |
53 |
|
xpss |
|- ( RR X. RR ) C_ ( _V X. _V ) |
54 |
53 18
|
sselid |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. ( _V X. _V ) ) |
55 |
20
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) e. RR* ) |
56 |
21
|
rphalfcld |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( d / 2 ) e. RR+ ) |
57 |
20 56
|
ltsubrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) - ( d / 2 ) ) < ( 1st ` X ) ) |
58 |
20 56
|
ltaddrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) < ( ( 1st ` X ) + ( d / 2 ) ) ) |
59 |
|
elioo1 |
|- ( ( ( ( 1st ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 1st ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) <-> ( ( 1st ` X ) e. RR* /\ ( ( 1st ` X ) - ( d / 2 ) ) < ( 1st ` X ) /\ ( 1st ` X ) < ( ( 1st ` X ) + ( d / 2 ) ) ) ) ) |
60 |
25 27 59
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) <-> ( ( 1st ` X ) e. RR* /\ ( ( 1st ` X ) - ( d / 2 ) ) < ( 1st ` X ) /\ ( 1st ` X ) < ( ( 1st ` X ) + ( d / 2 ) ) ) ) ) |
61 |
55 57 58 60
|
mpbir3and |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) ) |
62 |
31
|
rexrd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) e. RR* ) |
63 |
31 56
|
ltsubrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) - ( d / 2 ) ) < ( 2nd ` X ) ) |
64 |
31 56
|
ltaddrpd |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) < ( ( 2nd ` X ) + ( d / 2 ) ) ) |
65 |
|
elioo1 |
|- ( ( ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* /\ ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* ) -> ( ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) <-> ( ( 2nd ` X ) e. RR* /\ ( ( 2nd ` X ) - ( d / 2 ) ) < ( 2nd ` X ) /\ ( 2nd ` X ) < ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
66 |
33 35 65
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) <-> ( ( 2nd ` X ) e. RR* /\ ( ( 2nd ` X ) - ( d / 2 ) ) < ( 2nd ` X ) /\ ( 2nd ` X ) < ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
67 |
62 63 64 66
|
mpbir3and |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) |
68 |
61 67
|
jca |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) /\ ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
69 |
|
elxp7 |
|- ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) <-> ( X e. ( _V X. _V ) /\ ( ( 1st ` X ) e. ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) /\ ( 2nd ` X ) e. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
70 |
54 68 69
|
sylanbrc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
71 |
70
|
ralrimiva |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. d e. RR+ X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) |
72 |
|
mnfle |
|- ( ( ( 1st ` X ) - ( d / 2 ) ) e. RR* -> -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) ) |
73 |
25 72
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) ) |
74 |
|
pnfge |
|- ( ( ( 1st ` X ) + ( d / 2 ) ) e. RR* -> ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) |
75 |
27 74
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) |
76 |
|
mnfxr |
|- -oo e. RR* |
77 |
|
pnfxr |
|- +oo e. RR* |
78 |
|
ioossioo |
|- ( ( ( -oo e. RR* /\ +oo e. RR* ) /\ ( -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) /\ ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
79 |
76 77 78
|
mpanl12 |
|- ( ( -oo <_ ( ( 1st ` X ) - ( d / 2 ) ) /\ ( ( 1st ` X ) + ( d / 2 ) ) <_ +oo ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
80 |
73 75 79
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
81 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
82 |
80 81
|
sseqtrdi |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ RR ) |
83 |
|
mnfle |
|- ( ( ( 2nd ` X ) - ( d / 2 ) ) e. RR* -> -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) ) |
84 |
33 83
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) ) |
85 |
|
pnfge |
|- ( ( ( 2nd ` X ) + ( d / 2 ) ) e. RR* -> ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) |
86 |
35 85
|
syl |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) |
87 |
|
ioossioo |
|- ( ( ( -oo e. RR* /\ +oo e. RR* ) /\ ( -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) /\ ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
88 |
76 77 87
|
mpanl12 |
|- ( ( -oo <_ ( ( 2nd ` X ) - ( d / 2 ) ) /\ ( ( 2nd ` X ) + ( d / 2 ) ) <_ +oo ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
89 |
84 86 88
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ ( -oo (,) +oo ) ) |
90 |
89 81
|
sseqtrdi |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ RR ) |
91 |
|
xpss12 |
|- ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) C_ RR /\ ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) C_ RR ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( RR X. RR ) ) |
92 |
82 90 91
|
syl2anc |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( RR X. RR ) ) |
93 |
92
|
sselda |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> x e. ( RR X. RR ) ) |
94 |
93
|
expcom |
|- ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> x e. ( RR X. RR ) ) ) |
95 |
94
|
ancld |
|- ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) ) ) |
96 |
95
|
imdistanri |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
97 |
15
|
adantr |
|- ( ( A e. ( J tX J ) /\ ( X e. A /\ d e. RR+ /\ x e. ( RR X. RR ) ) ) -> A C_ ( RR X. RR ) ) |
98 |
|
simpr1 |
|- ( ( A e. ( J tX J ) /\ ( X e. A /\ d e. RR+ /\ x e. ( RR X. RR ) ) ) -> X e. A ) |
99 |
97 98
|
sseldd |
|- ( ( A e. ( J tX J ) /\ ( X e. A /\ d e. RR+ /\ x e. ( RR X. RR ) ) ) -> X e. ( RR X. RR ) ) |
100 |
99
|
3anassrs |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> X e. ( RR X. RR ) ) |
101 |
|
simpr |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> x e. ( RR X. RR ) ) |
102 |
|
simplr |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> d e. RR+ ) |
103 |
102
|
rphalfcld |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( d / 2 ) e. RR+ ) |
104 |
2
|
cnre2csqima |
|- ( ( X e. ( RR X. RR ) /\ x e. ( RR X. RR ) /\ ( d / 2 ) e. RR+ ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) ) |
105 |
100 101 103 104
|
syl3anc |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) ) |
106 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
107 |
2 1 106
|
cnrehmeo |
|- G e. ( ( J tX J ) Homeo ( TopOpen ` CCfld ) ) |
108 |
106
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
109 |
108
|
toponunii |
|- CC = U. ( TopOpen ` CCfld ) |
110 |
14 109
|
hmeof1o |
|- ( G e. ( ( J tX J ) Homeo ( TopOpen ` CCfld ) ) -> G : ( RR X. RR ) -1-1-onto-> CC ) |
111 |
|
f1of |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> G : ( RR X. RR ) --> CC ) |
112 |
107 110 111
|
mp2b |
|- G : ( RR X. RR ) --> CC |
113 |
112
|
a1i |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> G : ( RR X. RR ) --> CC ) |
114 |
113 100
|
ffvelrnd |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( G ` X ) e. CC ) |
115 |
112
|
a1i |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> G : ( RR X. RR ) --> CC ) |
116 |
115
|
ffvelrnda |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( G ` x ) e. CC ) |
117 |
|
sqsscirc2 |
|- ( ( ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) /\ d e. RR+ ) -> ( ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) ) |
118 |
114 116 102 117
|
syl21anc |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) ) |
119 |
118
|
imp |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) |
120 |
102
|
rpxrd |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> d e. RR* ) |
121 |
120
|
adantr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> d e. RR* ) |
122 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
123 |
121 122
|
jctil |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( abs o. - ) e. ( *Met ` CC ) /\ d e. RR* ) ) |
124 |
114
|
adantr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( G ` X ) e. CC ) |
125 |
116
|
adantr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( G ` x ) e. CC ) |
126 |
124 125
|
jca |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) ) |
127 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
128 |
127
|
cnmetdval |
|- ( ( ( G ` x ) e. CC /\ ( G ` X ) e. CC ) -> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) = ( abs ` ( ( G ` x ) - ( G ` X ) ) ) ) |
129 |
125 124 128
|
syl2anc |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) = ( abs ` ( ( G ` x ) - ( G ` X ) ) ) ) |
130 |
|
simpr |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) |
131 |
129 130
|
eqbrtrd |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) < d ) |
132 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ d e. RR* ) /\ ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) ) -> ( ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) <-> ( ( G ` x ) ( abs o. - ) ( G ` X ) ) < d ) ) |
133 |
132
|
biimpar |
|- ( ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ d e. RR* ) /\ ( ( G ` X ) e. CC /\ ( G ` x ) e. CC ) ) /\ ( ( G ` x ) ( abs o. - ) ( G ` X ) ) < d ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
134 |
123 126 131 133
|
syl21anc |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( abs ` ( ( G ` x ) - ( G ` X ) ) ) < d ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
135 |
119 134
|
syldan |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
136 |
135
|
ex |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( ( abs ` ( Re ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) /\ ( abs ` ( Im ` ( ( G ` x ) - ( G ` X ) ) ) ) < ( d / 2 ) ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
137 |
105 136
|
syld |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
138 |
|
f1ocnv |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> `' G : CC -1-1-onto-> ( RR X. RR ) ) |
139 |
107 110 138
|
mp2b |
|- `' G : CC -1-1-onto-> ( RR X. RR ) |
140 |
|
f1ofun |
|- ( `' G : CC -1-1-onto-> ( RR X. RR ) -> Fun `' G ) |
141 |
139 140
|
ax-mp |
|- Fun `' G |
142 |
|
f1odm |
|- ( `' G : CC -1-1-onto-> ( RR X. RR ) -> dom `' G = CC ) |
143 |
139 142
|
ax-mp |
|- dom `' G = CC |
144 |
116 143
|
eleqtrrdi |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( G ` x ) e. dom `' G ) |
145 |
|
funfvima |
|- ( ( Fun `' G /\ ( G ` x ) e. dom `' G ) -> ( ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) -> ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
146 |
141 144 145
|
sylancr |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( G ` x ) e. ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) -> ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
147 |
107 110
|
mp1i |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> G : ( RR X. RR ) -1-1-onto-> CC ) |
148 |
|
f1ocnvfv1 |
|- ( ( G : ( RR X. RR ) -1-1-onto-> CC /\ x e. ( RR X. RR ) ) -> ( `' G ` ( G ` x ) ) = x ) |
149 |
147 101 148
|
syl2anc |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( `' G ` ( G ` x ) ) = x ) |
150 |
149
|
eleq1d |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) <-> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
151 |
150
|
biimpd |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( ( `' G ` ( G ` x ) ) e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
152 |
137 146 151
|
3syld |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
153 |
152
|
imp |
|- ( ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( RR X. RR ) ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
154 |
96 153
|
syl |
|- ( ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) /\ x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
155 |
154
|
ex |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( x e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> x e. ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) ) |
156 |
155
|
ssrdv |
|- ( ( ( A e. ( J tX J ) /\ X e. A ) /\ d e. RR+ ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
157 |
156
|
ralrimiva |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) ) |
158 |
2
|
mpofun |
|- Fun G |
159 |
158
|
a1i |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> Fun G ) |
160 |
15
|
sselda |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. ( RR X. RR ) ) |
161 |
|
f1odm |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> dom G = ( RR X. RR ) ) |
162 |
107 110 161
|
mp2b |
|- dom G = ( RR X. RR ) |
163 |
160 162
|
eleqtrrdi |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. dom G ) |
164 |
|
simpr |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. A ) |
165 |
|
funfvima |
|- ( ( Fun G /\ X e. dom G ) -> ( X e. A -> ( G ` X ) e. ( G " A ) ) ) |
166 |
165
|
imp |
|- ( ( ( Fun G /\ X e. dom G ) /\ X e. A ) -> ( G ` X ) e. ( G " A ) ) |
167 |
159 163 164 166
|
syl21anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> ( G ` X ) e. ( G " A ) ) |
168 |
|
hmeoima |
|- ( ( G e. ( ( J tX J ) Homeo ( TopOpen ` CCfld ) ) /\ A e. ( J tX J ) ) -> ( G " A ) e. ( TopOpen ` CCfld ) ) |
169 |
107 168
|
mpan |
|- ( A e. ( J tX J ) -> ( G " A ) e. ( TopOpen ` CCfld ) ) |
170 |
106
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
171 |
170
|
elmopn2 |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( ( G " A ) e. ( TopOpen ` CCfld ) <-> ( ( G " A ) C_ CC /\ A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) ) |
172 |
122 171
|
ax-mp |
|- ( ( G " A ) e. ( TopOpen ` CCfld ) <-> ( ( G " A ) C_ CC /\ A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) |
173 |
172
|
simprbi |
|- ( ( G " A ) e. ( TopOpen ` CCfld ) -> A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
174 |
169 173
|
syl |
|- ( A e. ( J tX J ) -> A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
175 |
174
|
adantr |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
176 |
|
oveq1 |
|- ( m = ( G ` X ) -> ( m ( ball ` ( abs o. - ) ) d ) = ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) |
177 |
176
|
sseq1d |
|- ( m = ( G ` X ) -> ( ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) <-> ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) |
178 |
177
|
rexbidv |
|- ( m = ( G ` X ) -> ( E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) <-> E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) ) |
179 |
178
|
rspcva |
|- ( ( ( G ` X ) e. ( G " A ) /\ A. m e. ( G " A ) E. d e. RR+ ( m ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) -> E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
180 |
167 175 179
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) ) |
181 |
|
imass2 |
|- ( ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ ( `' G " ( G " A ) ) ) |
182 |
|
f1of1 |
|- ( G : ( RR X. RR ) -1-1-onto-> CC -> G : ( RR X. RR ) -1-1-> CC ) |
183 |
107 110 182
|
mp2b |
|- G : ( RR X. RR ) -1-1-> CC |
184 |
|
f1imacnv |
|- ( ( G : ( RR X. RR ) -1-1-> CC /\ A C_ ( RR X. RR ) ) -> ( `' G " ( G " A ) ) = A ) |
185 |
183 15 184
|
sylancr |
|- ( A e. ( J tX J ) -> ( `' G " ( G " A ) ) = A ) |
186 |
185
|
sseq2d |
|- ( A e. ( J tX J ) -> ( ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ ( `' G " ( G " A ) ) <-> ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
187 |
181 186
|
syl5ib |
|- ( A e. ( J tX J ) -> ( ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
188 |
187
|
reximdv |
|- ( A e. ( J tX J ) -> ( E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
189 |
188
|
adantr |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> ( E. d e. RR+ ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) C_ ( G " A ) -> E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
190 |
180 189
|
mpd |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) |
191 |
|
r19.29 |
|- ( ( A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ E. d e. RR+ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
192 |
157 190 191
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) ) |
193 |
|
sstr |
|- ( ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) -> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) |
194 |
193
|
reximi |
|- ( E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) /\ ( `' G " ( ( G ` X ) ( ball ` ( abs o. - ) ) d ) ) C_ A ) -> E. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) |
195 |
192 194
|
syl |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) |
196 |
|
r19.29 |
|- ( ( A. d e. RR+ X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ E. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) -> E. d e. RR+ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) |
197 |
71 195 196
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) |
198 |
|
r19.29 |
|- ( ( A. d e. RR+ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ E. d e. RR+ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) ) |
199 |
52 197 198
|
syl2anc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) ) |
200 |
|
eleq2 |
|- ( r = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( X e. r <-> X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) ) ) |
201 |
|
sseq1 |
|- ( r = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( r C_ A <-> ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) |
202 |
200 201
|
anbi12d |
|- ( r = ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) -> ( ( X e. r /\ r C_ A ) <-> ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) ) |
203 |
202
|
rspcev |
|- ( ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) -> E. r e. B ( X e. r /\ r C_ A ) ) |
204 |
203
|
rexlimivw |
|- ( E. d e. RR+ ( ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) e. B /\ ( X e. ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) /\ ( ( ( ( 1st ` X ) - ( d / 2 ) ) (,) ( ( 1st ` X ) + ( d / 2 ) ) ) X. ( ( ( 2nd ` X ) - ( d / 2 ) ) (,) ( ( 2nd ` X ) + ( d / 2 ) ) ) ) C_ A ) ) -> E. r e. B ( X e. r /\ r C_ A ) ) |
205 |
199 204
|
syl |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. r e. B ( X e. r /\ r C_ A ) ) |