Metamath Proof Explorer


Theorem tpr2rico

Description: For any point of an open set of the usual topology on ( RR X. RR ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the ( l ^ +oo ) norm X . (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypotheses tpr2rico.0 J = topGen ran .
tpr2rico.1 G = u , v u + i v
tpr2rico.2 B = ran x ran . , y ran . x × y
Assertion tpr2rico A J × t J X A r B X r r A

Proof

Step Hyp Ref Expression
1 tpr2rico.0 J = topGen ran .
2 tpr2rico.1 G = u , v u + i v
3 tpr2rico.2 B = ran x ran . , y ran . x × y
4 df-ioo . = x * , y * z * | x < z z < y
5 4 ixxf . : * × * 𝒫 *
6 ffn . : * × * 𝒫 * . Fn * × *
7 5 6 mp1i A J × t J X A d + . Fn * × *
8 elssuni A J × t J A J × t J
9 retop topGen ran . Top
10 1 9 eqeltri J Top
11 uniretop = topGen ran .
12 1 unieqi J = topGen ran .
13 11 12 eqtr4i = J
14 10 10 13 13 txunii 2 = J × t J
15 8 14 sseqtrrdi A J × t J A 2
16 15 ad2antrr A J × t J X A d + A 2
17 simplr A J × t J X A d + X A
18 16 17 sseldd A J × t J X A d + X 2
19 xp1st X 2 1 st X
20 18 19 syl A J × t J X A d + 1 st X
21 simpr A J × t J X A d + d +
22 21 rpred A J × t J X A d + d
23 22 rehalfcld A J × t J X A d + d 2
24 20 23 resubcld A J × t J X A d + 1 st X d 2
25 24 rexrd A J × t J X A d + 1 st X d 2 *
26 20 23 readdcld A J × t J X A d + 1 st X + d 2
27 26 rexrd A J × t J X A d + 1 st X + d 2 *
28 fnovrn . Fn * × * 1 st X d 2 * 1 st X + d 2 * 1 st X d 2 1 st X + d 2 ran .
29 7 25 27 28 syl3anc A J × t J X A d + 1 st X d 2 1 st X + d 2 ran .
30 xp2nd X 2 2 nd X
31 18 30 syl A J × t J X A d + 2 nd X
32 31 23 resubcld A J × t J X A d + 2 nd X d 2
33 32 rexrd A J × t J X A d + 2 nd X d 2 *
34 31 23 readdcld A J × t J X A d + 2 nd X + d 2
35 34 rexrd A J × t J X A d + 2 nd X + d 2 *
36 fnovrn . Fn * × * 2 nd X d 2 * 2 nd X + d 2 * 2 nd X d 2 2 nd X + d 2 ran .
37 7 33 35 36 syl3anc A J × t J X A d + 2 nd X d 2 2 nd X + d 2 ran .
38 eqidd A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
39 xpeq1 x = 1 st X d 2 1 st X + d 2 x × y = 1 st X d 2 1 st X + d 2 × y
40 39 eqeq2d x = 1 st X d 2 1 st X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = x × y 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = 1 st X d 2 1 st X + d 2 × y
41 xpeq2 y = 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × y = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
42 41 eqeq2d y = 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = 1 st X d 2 1 st X + d 2 × y 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
43 40 42 rspc2ev 1 st X d 2 1 st X + d 2 ran . 2 nd X d 2 2 nd X + d 2 ran . 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 x ran . y ran . 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = x × y
44 29 37 38 43 syl3anc A J × t J X A d + x ran . y ran . 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = x × y
45 eqid x ran . , y ran . x × y = x ran . , y ran . x × y
46 vex x V
47 vex y V
48 46 47 xpex x × y V
49 45 48 elrnmpo 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 ran x ran . , y ran . x × y x ran . y ran . 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 = x × y
50 44 49 sylibr A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 ran x ran . , y ran . x × y
51 50 3 eleqtrrdi A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B
52 51 ralrimiva A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B
53 xpss 2 V × V
54 53 18 sselid A J × t J X A d + X V × V
55 20 rexrd A J × t J X A d + 1 st X *
56 21 rphalfcld A J × t J X A d + d 2 +
57 20 56 ltsubrpd A J × t J X A d + 1 st X d 2 < 1 st X
58 20 56 ltaddrpd A J × t J X A d + 1 st X < 1 st X + d 2
59 elioo1 1 st X d 2 * 1 st X + d 2 * 1 st X 1 st X d 2 1 st X + d 2 1 st X * 1 st X d 2 < 1 st X 1 st X < 1 st X + d 2
60 25 27 59 syl2anc A J × t J X A d + 1 st X 1 st X d 2 1 st X + d 2 1 st X * 1 st X d 2 < 1 st X 1 st X < 1 st X + d 2
61 55 57 58 60 mpbir3and A J × t J X A d + 1 st X 1 st X d 2 1 st X + d 2
62 31 rexrd A J × t J X A d + 2 nd X *
63 31 56 ltsubrpd A J × t J X A d + 2 nd X d 2 < 2 nd X
64 31 56 ltaddrpd A J × t J X A d + 2 nd X < 2 nd X + d 2
65 elioo1 2 nd X d 2 * 2 nd X + d 2 * 2 nd X 2 nd X d 2 2 nd X + d 2 2 nd X * 2 nd X d 2 < 2 nd X 2 nd X < 2 nd X + d 2
66 33 35 65 syl2anc A J × t J X A d + 2 nd X 2 nd X d 2 2 nd X + d 2 2 nd X * 2 nd X d 2 < 2 nd X 2 nd X < 2 nd X + d 2
67 62 63 64 66 mpbir3and A J × t J X A d + 2 nd X 2 nd X d 2 2 nd X + d 2
68 61 67 jca A J × t J X A d + 1 st X 1 st X d 2 1 st X + d 2 2 nd X 2 nd X d 2 2 nd X + d 2
69 elxp7 X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 X V × V 1 st X 1 st X d 2 1 st X + d 2 2 nd X 2 nd X d 2 2 nd X + d 2
70 54 68 69 sylanbrc A J × t J X A d + X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
71 70 ralrimiva A J × t J X A d + X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
72 mnfle 1 st X d 2 * −∞ 1 st X d 2
73 25 72 syl A J × t J X A d + −∞ 1 st X d 2
74 pnfge 1 st X + d 2 * 1 st X + d 2 +∞
75 27 74 syl A J × t J X A d + 1 st X + d 2 +∞
76 mnfxr −∞ *
77 pnfxr +∞ *
78 ioossioo −∞ * +∞ * −∞ 1 st X d 2 1 st X + d 2 +∞ 1 st X d 2 1 st X + d 2 −∞ +∞
79 76 77 78 mpanl12 −∞ 1 st X d 2 1 st X + d 2 +∞ 1 st X d 2 1 st X + d 2 −∞ +∞
80 73 75 79 syl2anc A J × t J X A d + 1 st X d 2 1 st X + d 2 −∞ +∞
81 ioomax −∞ +∞ =
82 80 81 sseqtrdi A J × t J X A d + 1 st X d 2 1 st X + d 2
83 mnfle 2 nd X d 2 * −∞ 2 nd X d 2
84 33 83 syl A J × t J X A d + −∞ 2 nd X d 2
85 pnfge 2 nd X + d 2 * 2 nd X + d 2 +∞
86 35 85 syl A J × t J X A d + 2 nd X + d 2 +∞
87 ioossioo −∞ * +∞ * −∞ 2 nd X d 2 2 nd X + d 2 +∞ 2 nd X d 2 2 nd X + d 2 −∞ +∞
88 76 77 87 mpanl12 −∞ 2 nd X d 2 2 nd X + d 2 +∞ 2 nd X d 2 2 nd X + d 2 −∞ +∞
89 84 86 88 syl2anc A J × t J X A d + 2 nd X d 2 2 nd X + d 2 −∞ +∞
90 89 81 sseqtrdi A J × t J X A d + 2 nd X d 2 2 nd X + d 2
91 xpss12 1 st X d 2 1 st X + d 2 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 2
92 82 90 91 syl2anc A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 2
93 92 sselda A J × t J X A d + x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 x 2
94 93 expcom x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A J × t J X A d + x 2
95 94 ancld x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A J × t J X A d + A J × t J X A d + x 2
96 95 imdistanri A J × t J X A d + x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A J × t J X A d + x 2 x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
97 15 adantr A J × t J X A d + x 2 A 2
98 simpr1 A J × t J X A d + x 2 X A
99 97 98 sseldd A J × t J X A d + x 2 X 2
100 99 3anassrs A J × t J X A d + x 2 X 2
101 simpr A J × t J X A d + x 2 x 2
102 simplr A J × t J X A d + x 2 d +
103 102 rphalfcld A J × t J X A d + x 2 d 2 +
104 2 cnre2csqima X 2 x 2 d 2 + x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G x G X < d 2 G x G X < d 2
105 100 101 103 104 syl3anc A J × t J X A d + x 2 x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G x G X < d 2 G x G X < d 2
106 eqid TopOpen fld = TopOpen fld
107 2 1 106 cnrehmeo G J × t J Homeo TopOpen fld
108 106 cnfldtopon TopOpen fld TopOn
109 108 toponunii = TopOpen fld
110 14 109 hmeof1o G J × t J Homeo TopOpen fld G : 2 1-1 onto
111 f1of G : 2 1-1 onto G : 2
112 107 110 111 mp2b G : 2
113 112 a1i A J × t J X A d + x 2 G : 2
114 113 100 ffvelrnd A J × t J X A d + x 2 G X
115 112 a1i A J × t J X A d + G : 2
116 115 ffvelrnda A J × t J X A d + x 2 G x
117 sqsscirc2 G X G x d + G x G X < d 2 G x G X < d 2 G x G X < d
118 114 116 102 117 syl21anc A J × t J X A d + x 2 G x G X < d 2 G x G X < d 2 G x G X < d
119 118 imp A J × t J X A d + x 2 G x G X < d 2 G x G X < d 2 G x G X < d
120 102 rpxrd A J × t J X A d + x 2 d *
121 120 adantr A J × t J X A d + x 2 G x G X < d d *
122 cnxmet abs ∞Met
123 121 122 jctil A J × t J X A d + x 2 G x G X < d abs ∞Met d *
124 114 adantr A J × t J X A d + x 2 G x G X < d G X
125 116 adantr A J × t J X A d + x 2 G x G X < d G x
126 124 125 jca A J × t J X A d + x 2 G x G X < d G X G x
127 eqid abs = abs
128 127 cnmetdval G x G X G x abs G X = G x G X
129 125 124 128 syl2anc A J × t J X A d + x 2 G x G X < d G x abs G X = G x G X
130 simpr A J × t J X A d + x 2 G x G X < d G x G X < d
131 129 130 eqbrtrd A J × t J X A d + x 2 G x G X < d G x abs G X < d
132 elbl3 abs ∞Met d * G X G x G x G X ball abs d G x abs G X < d
133 132 biimpar abs ∞Met d * G X G x G x abs G X < d G x G X ball abs d
134 123 126 131 133 syl21anc A J × t J X A d + x 2 G x G X < d G x G X ball abs d
135 119 134 syldan A J × t J X A d + x 2 G x G X < d 2 G x G X < d 2 G x G X ball abs d
136 135 ex A J × t J X A d + x 2 G x G X < d 2 G x G X < d 2 G x G X ball abs d
137 105 136 syld A J × t J X A d + x 2 x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G x G X ball abs d
138 f1ocnv G : 2 1-1 onto G -1 : 1-1 onto 2
139 107 110 138 mp2b G -1 : 1-1 onto 2
140 f1ofun G -1 : 1-1 onto 2 Fun G -1
141 139 140 ax-mp Fun G -1
142 f1odm G -1 : 1-1 onto 2 dom G -1 =
143 139 142 ax-mp dom G -1 =
144 116 143 eleqtrrdi A J × t J X A d + x 2 G x dom G -1
145 funfvima Fun G -1 G x dom G -1 G x G X ball abs d G -1 G x G -1 G X ball abs d
146 141 144 145 sylancr A J × t J X A d + x 2 G x G X ball abs d G -1 G x G -1 G X ball abs d
147 107 110 mp1i A J × t J X A d + x 2 G : 2 1-1 onto
148 f1ocnvfv1 G : 2 1-1 onto x 2 G -1 G x = x
149 147 101 148 syl2anc A J × t J X A d + x 2 G -1 G x = x
150 149 eleq1d A J × t J X A d + x 2 G -1 G x G -1 G X ball abs d x G -1 G X ball abs d
151 150 biimpd A J × t J X A d + x 2 G -1 G x G -1 G X ball abs d x G -1 G X ball abs d
152 137 146 151 3syld A J × t J X A d + x 2 x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 x G -1 G X ball abs d
153 152 imp A J × t J X A d + x 2 x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 x G -1 G X ball abs d
154 96 153 syl A J × t J X A d + x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 x G -1 G X ball abs d
155 154 ex A J × t J X A d + x 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 x G -1 G X ball abs d
156 155 ssrdv A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d
157 156 ralrimiva A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d
158 2 mpofun Fun G
159 158 a1i A J × t J X A Fun G
160 15 sselda A J × t J X A X 2
161 f1odm G : 2 1-1 onto dom G = 2
162 107 110 161 mp2b dom G = 2
163 160 162 eleqtrrdi A J × t J X A X dom G
164 simpr A J × t J X A X A
165 funfvima Fun G X dom G X A G X G A
166 165 imp Fun G X dom G X A G X G A
167 159 163 164 166 syl21anc A J × t J X A G X G A
168 hmeoima G J × t J Homeo TopOpen fld A J × t J G A TopOpen fld
169 107 168 mpan A J × t J G A TopOpen fld
170 106 cnfldtopn TopOpen fld = MetOpen abs
171 170 elmopn2 abs ∞Met G A TopOpen fld G A m G A d + m ball abs d G A
172 122 171 ax-mp G A TopOpen fld G A m G A d + m ball abs d G A
173 172 simprbi G A TopOpen fld m G A d + m ball abs d G A
174 169 173 syl A J × t J m G A d + m ball abs d G A
175 174 adantr A J × t J X A m G A d + m ball abs d G A
176 oveq1 m = G X m ball abs d = G X ball abs d
177 176 sseq1d m = G X m ball abs d G A G X ball abs d G A
178 177 rexbidv m = G X d + m ball abs d G A d + G X ball abs d G A
179 178 rspcva G X G A m G A d + m ball abs d G A d + G X ball abs d G A
180 167 175 179 syl2anc A J × t J X A d + G X ball abs d G A
181 imass2 G X ball abs d G A G -1 G X ball abs d G -1 G A
182 f1of1 G : 2 1-1 onto G : 2 1-1
183 107 110 182 mp2b G : 2 1-1
184 f1imacnv G : 2 1-1 A 2 G -1 G A = A
185 183 15 184 sylancr A J × t J G -1 G A = A
186 185 sseq2d A J × t J G -1 G X ball abs d G -1 G A G -1 G X ball abs d A
187 181 186 syl5ib A J × t J G X ball abs d G A G -1 G X ball abs d A
188 187 reximdv A J × t J d + G X ball abs d G A d + G -1 G X ball abs d A
189 188 adantr A J × t J X A d + G X ball abs d G A d + G -1 G X ball abs d A
190 180 189 mpd A J × t J X A d + G -1 G X ball abs d A
191 r19.29 d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d d + G -1 G X ball abs d A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d G -1 G X ball abs d A
192 157 190 191 syl2anc A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d G -1 G X ball abs d A
193 sstr 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d G -1 G X ball abs d A 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
194 193 reximi d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 G -1 G X ball abs d G -1 G X ball abs d A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
195 192 194 syl A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
196 r19.29 d + X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A d + X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
197 71 195 196 syl2anc A J × t J X A d + X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
198 r19.29 d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B d + X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
199 52 197 198 syl2anc A J × t J X A d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
200 eleq2 r = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 X r X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2
201 sseq1 r = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 r A 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
202 200 201 anbi12d r = 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 X r r A X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A
203 202 rspcev 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A r B X r r A
204 203 rexlimivw d + 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 B X 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 1 st X d 2 1 st X + d 2 × 2 nd X d 2 2 nd X + d 2 A r B X r r A
205 199 204 syl A J × t J X A r B X r r A