| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre2csqima.1 |
|
| 2 |
|
ioossre |
|
| 3 |
|
ioossre |
|
| 4 |
|
xpinpreima2 |
|
| 5 |
4
|
eleq2d |
|
| 6 |
2 3 5
|
mp2an |
|
| 7 |
|
elin |
|
| 8 |
|
simpl |
|
| 9 |
8
|
recnd |
|
| 10 |
|
ax-icn |
|
| 11 |
10
|
a1i |
|
| 12 |
|
simpr |
|
| 13 |
12
|
recnd |
|
| 14 |
11 13
|
mulcld |
|
| 15 |
9 14
|
addcld |
|
| 16 |
|
reval |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
crre |
|
| 19 |
17 18
|
eqtr3d |
|
| 20 |
19
|
mpoeq3ia |
|
| 21 |
15
|
adantl |
|
| 22 |
1
|
a1i |
|
| 23 |
|
df-re |
|
| 24 |
23
|
a1i |
|
| 25 |
|
id |
|
| 26 |
|
fveq2 |
|
| 27 |
25 26
|
oveq12d |
|
| 28 |
27
|
oveq1d |
|
| 29 |
21 22 24 28
|
fmpoco |
|
| 30 |
29
|
mptru |
|
| 31 |
|
df1stres |
|
| 32 |
20 30 31
|
3eqtr4ri |
|
| 33 |
15
|
rgen2 |
|
| 34 |
1
|
fnmpo |
|
| 35 |
33 34
|
ax-mp |
|
| 36 |
|
fo1st |
|
| 37 |
|
fofn |
|
| 38 |
36 37
|
ax-mp |
|
| 39 |
|
xp1st |
|
| 40 |
1
|
rnmpo |
|
| 41 |
|
simpr |
|
| 42 |
15
|
adantr |
|
| 43 |
41 42
|
eqeltrd |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
rexlimivv |
|
| 46 |
45
|
abssi |
|
| 47 |
40 46
|
eqsstri |
|
| 48 |
|
simpl |
|
| 49 |
47 48
|
sselid |
|
| 50 |
|
simpr |
|
| 51 |
47 50
|
sselid |
|
| 52 |
49 51
|
resubd |
|
| 53 |
32 35 38 39 52
|
cnre2csqlem |
|
| 54 |
|
imval |
|
| 55 |
15 54
|
syl |
|
| 56 |
|
crim |
|
| 57 |
55 56
|
eqtr3d |
|
| 58 |
57
|
mpoeq3ia |
|
| 59 |
|
df-im |
|
| 60 |
59
|
a1i |
|
| 61 |
|
fvoveq1 |
|
| 62 |
21 22 60 61
|
fmpoco |
|
| 63 |
62
|
mptru |
|
| 64 |
|
df2ndres |
|
| 65 |
58 63 64
|
3eqtr4ri |
|
| 66 |
|
fo2nd |
|
| 67 |
|
fofn |
|
| 68 |
66 67
|
ax-mp |
|
| 69 |
|
xp2nd |
|
| 70 |
49 51
|
imsubd |
|
| 71 |
65 35 68 69 70
|
cnre2csqlem |
|
| 72 |
53 71
|
anim12d |
|
| 73 |
7 72
|
biimtrid |
|
| 74 |
6 73
|
biimtrid |
|