Metamath Proof Explorer


Theorem cnre2csqima

Description: Image of a centered square by the canonical bijection from ( RR X. RR ) to CC . (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Hypothesis cnre2csqima.1
|- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) )
Assertion cnre2csqima
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) X. ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) -> ( ( abs ` ( Re ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D /\ ( abs ` ( Im ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) ) )

Proof

Step Hyp Ref Expression
1 cnre2csqima.1
 |-  F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) )
2 ioossre
 |-  ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) C_ RR
3 ioossre
 |-  ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) C_ RR
4 xpinpreima2
 |-  ( ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) C_ RR /\ ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) C_ RR ) -> ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) X. ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) = ( ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) )
5 4 eleq2d
 |-  ( ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) C_ RR /\ ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) C_ RR ) -> ( Y e. ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) X. ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) <-> Y e. ( ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) ) )
6 2 3 5 mp2an
 |-  ( Y e. ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) X. ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) <-> Y e. ( ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) )
7 elin
 |-  ( Y e. ( ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) <-> ( Y e. ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) /\ Y e. ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) )
8 simpl
 |-  ( ( x e. RR /\ y e. RR ) -> x e. RR )
9 8 recnd
 |-  ( ( x e. RR /\ y e. RR ) -> x e. CC )
10 ax-icn
 |-  _i e. CC
11 10 a1i
 |-  ( ( x e. RR /\ y e. RR ) -> _i e. CC )
12 simpr
 |-  ( ( x e. RR /\ y e. RR ) -> y e. RR )
13 12 recnd
 |-  ( ( x e. RR /\ y e. RR ) -> y e. CC )
14 11 13 mulcld
 |-  ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) e. CC )
15 9 14 addcld
 |-  ( ( x e. RR /\ y e. RR ) -> ( x + ( _i x. y ) ) e. CC )
16 reval
 |-  ( ( x + ( _i x. y ) ) e. CC -> ( Re ` ( x + ( _i x. y ) ) ) = ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) )
17 15 16 syl
 |-  ( ( x e. RR /\ y e. RR ) -> ( Re ` ( x + ( _i x. y ) ) ) = ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) )
18 crre
 |-  ( ( x e. RR /\ y e. RR ) -> ( Re ` ( x + ( _i x. y ) ) ) = x )
19 17 18 eqtr3d
 |-  ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) = x )
20 19 mpoeq3ia
 |-  ( x e. RR , y e. RR |-> ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) ) = ( x e. RR , y e. RR |-> x )
21 15 adantl
 |-  ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x + ( _i x. y ) ) e. CC )
22 1 a1i
 |-  ( T. -> F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) )
23 df-re
 |-  Re = ( z e. CC |-> ( ( z + ( * ` z ) ) / 2 ) )
24 23 a1i
 |-  ( T. -> Re = ( z e. CC |-> ( ( z + ( * ` z ) ) / 2 ) ) )
25 id
 |-  ( z = ( x + ( _i x. y ) ) -> z = ( x + ( _i x. y ) ) )
26 fveq2
 |-  ( z = ( x + ( _i x. y ) ) -> ( * ` z ) = ( * ` ( x + ( _i x. y ) ) ) )
27 25 26 oveq12d
 |-  ( z = ( x + ( _i x. y ) ) -> ( z + ( * ` z ) ) = ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) )
28 27 oveq1d
 |-  ( z = ( x + ( _i x. y ) ) -> ( ( z + ( * ` z ) ) / 2 ) = ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) )
29 21 22 24 28 fmpoco
 |-  ( T. -> ( Re o. F ) = ( x e. RR , y e. RR |-> ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) ) )
30 29 mptru
 |-  ( Re o. F ) = ( x e. RR , y e. RR |-> ( ( ( x + ( _i x. y ) ) + ( * ` ( x + ( _i x. y ) ) ) ) / 2 ) )
31 df1stres
 |-  ( 1st |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> x )
32 20 30 31 3eqtr4ri
 |-  ( 1st |` ( RR X. RR ) ) = ( Re o. F )
33 15 rgen2
 |-  A. x e. RR A. y e. RR ( x + ( _i x. y ) ) e. CC
34 1 fnmpo
 |-  ( A. x e. RR A. y e. RR ( x + ( _i x. y ) ) e. CC -> F Fn ( RR X. RR ) )
35 33 34 ax-mp
 |-  F Fn ( RR X. RR )
36 fo1st
 |-  1st : _V -onto-> _V
37 fofn
 |-  ( 1st : _V -onto-> _V -> 1st Fn _V )
38 36 37 ax-mp
 |-  1st Fn _V
39 xp1st
 |-  ( z e. ( RR X. RR ) -> ( 1st ` z ) e. RR )
40 1 rnmpo
 |-  ran F = { z | E. x e. RR E. y e. RR z = ( x + ( _i x. y ) ) }
41 simpr
 |-  ( ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) -> z = ( x + ( _i x. y ) ) )
42 15 adantr
 |-  ( ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) -> ( x + ( _i x. y ) ) e. CC )
43 41 42 eqeltrd
 |-  ( ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) -> z e. CC )
44 43 ex
 |-  ( ( x e. RR /\ y e. RR ) -> ( z = ( x + ( _i x. y ) ) -> z e. CC ) )
45 44 rexlimivv
 |-  ( E. x e. RR E. y e. RR z = ( x + ( _i x. y ) ) -> z e. CC )
46 45 abssi
 |-  { z | E. x e. RR E. y e. RR z = ( x + ( _i x. y ) ) } C_ CC
47 40 46 eqsstri
 |-  ran F C_ CC
48 simpl
 |-  ( ( z e. ran F /\ u e. ran F ) -> z e. ran F )
49 47 48 sselid
 |-  ( ( z e. ran F /\ u e. ran F ) -> z e. CC )
50 simpr
 |-  ( ( z e. ran F /\ u e. ran F ) -> u e. ran F )
51 47 50 sselid
 |-  ( ( z e. ran F /\ u e. ran F ) -> u e. CC )
52 49 51 resubd
 |-  ( ( z e. ran F /\ u e. ran F ) -> ( Re ` ( z - u ) ) = ( ( Re ` z ) - ( Re ` u ) ) )
53 32 35 38 39 52 cnre2csqlem
 |-  ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) -> ( abs ` ( Re ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) )
54 imval
 |-  ( ( x + ( _i x. y ) ) e. CC -> ( Im ` ( x + ( _i x. y ) ) ) = ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) )
55 15 54 syl
 |-  ( ( x e. RR /\ y e. RR ) -> ( Im ` ( x + ( _i x. y ) ) ) = ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) )
56 crim
 |-  ( ( x e. RR /\ y e. RR ) -> ( Im ` ( x + ( _i x. y ) ) ) = y )
57 55 56 eqtr3d
 |-  ( ( x e. RR /\ y e. RR ) -> ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) = y )
58 57 mpoeq3ia
 |-  ( x e. RR , y e. RR |-> ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) ) = ( x e. RR , y e. RR |-> y )
59 df-im
 |-  Im = ( z e. CC |-> ( Re ` ( z / _i ) ) )
60 59 a1i
 |-  ( T. -> Im = ( z e. CC |-> ( Re ` ( z / _i ) ) ) )
61 fvoveq1
 |-  ( z = ( x + ( _i x. y ) ) -> ( Re ` ( z / _i ) ) = ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) )
62 21 22 60 61 fmpoco
 |-  ( T. -> ( Im o. F ) = ( x e. RR , y e. RR |-> ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) ) )
63 62 mptru
 |-  ( Im o. F ) = ( x e. RR , y e. RR |-> ( Re ` ( ( x + ( _i x. y ) ) / _i ) ) )
64 df2ndres
 |-  ( 2nd |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> y )
65 58 63 64 3eqtr4ri
 |-  ( 2nd |` ( RR X. RR ) ) = ( Im o. F )
66 fo2nd
 |-  2nd : _V -onto-> _V
67 fofn
 |-  ( 2nd : _V -onto-> _V -> 2nd Fn _V )
68 66 67 ax-mp
 |-  2nd Fn _V
69 xp2nd
 |-  ( z e. ( RR X. RR ) -> ( 2nd ` z ) e. RR )
70 49 51 imsubd
 |-  ( ( z e. ran F /\ u e. ran F ) -> ( Im ` ( z - u ) ) = ( ( Im ` z ) - ( Im ` u ) ) )
71 65 35 68 69 70 cnre2csqlem
 |-  ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) -> ( abs ` ( Im ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) )
72 53 71 anim12d
 |-  ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( Y e. ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) /\ Y e. ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) -> ( ( abs ` ( Re ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D /\ ( abs ` ( Im ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) ) )
73 7 72 syl5bi
 |-  ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( ( `' ( 1st |` ( RR X. RR ) ) " ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) ) -> ( ( abs ` ( Re ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D /\ ( abs ` ( Im ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) ) )
74 6 73 syl5bi
 |-  ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( ( ( ( 1st ` X ) - D ) (,) ( ( 1st ` X ) + D ) ) X. ( ( ( 2nd ` X ) - D ) (,) ( ( 2nd ` X ) + D ) ) ) -> ( ( abs ` ( Re ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D /\ ( abs ` ( Im ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) ) )