Step |
Hyp |
Ref |
Expression |
1 |
|
xp2 |
|- ( A X. B ) = { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } |
2 |
|
xpss |
|- ( E X. F ) C_ ( _V X. _V ) |
3 |
|
rabss2 |
|- ( ( E X. F ) C_ ( _V X. _V ) -> { r e. ( E X. F ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } C_ { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } ) |
4 |
2 3
|
mp1i |
|- ( ( A C_ E /\ B C_ F ) -> { r e. ( E X. F ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } C_ { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } ) |
5 |
|
simprl |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> r e. ( _V X. _V ) ) |
6 |
|
simpll |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> A C_ E ) |
7 |
|
simprrl |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> ( 1st ` r ) e. A ) |
8 |
6 7
|
sseldd |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> ( 1st ` r ) e. E ) |
9 |
|
simplr |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> B C_ F ) |
10 |
|
simprrr |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> ( 2nd ` r ) e. B ) |
11 |
9 10
|
sseldd |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> ( 2nd ` r ) e. F ) |
12 |
8 11
|
jca |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> ( ( 1st ` r ) e. E /\ ( 2nd ` r ) e. F ) ) |
13 |
|
elxp7 |
|- ( r e. ( E X. F ) <-> ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. E /\ ( 2nd ` r ) e. F ) ) ) |
14 |
5 12 13
|
sylanbrc |
|- ( ( ( A C_ E /\ B C_ F ) /\ ( r e. ( _V X. _V ) /\ ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) ) ) -> r e. ( E X. F ) ) |
15 |
14
|
rabss3d |
|- ( ( A C_ E /\ B C_ F ) -> { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } C_ { r e. ( E X. F ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } ) |
16 |
4 15
|
eqssd |
|- ( ( A C_ E /\ B C_ F ) -> { r e. ( E X. F ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } = { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } ) |
17 |
1 16
|
eqtr4id |
|- ( ( A C_ E /\ B C_ F ) -> ( A X. B ) = { r e. ( E X. F ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } ) |
18 |
|
inrab |
|- ( { r e. ( E X. F ) | ( 1st ` r ) e. A } i^i { r e. ( E X. F ) | ( 2nd ` r ) e. B } ) = { r e. ( E X. F ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } |
19 |
17 18
|
eqtr4di |
|- ( ( A C_ E /\ B C_ F ) -> ( A X. B ) = ( { r e. ( E X. F ) | ( 1st ` r ) e. A } i^i { r e. ( E X. F ) | ( 2nd ` r ) e. B } ) ) |
20 |
|
f1stres |
|- ( 1st |` ( E X. F ) ) : ( E X. F ) --> E |
21 |
|
ffn |
|- ( ( 1st |` ( E X. F ) ) : ( E X. F ) --> E -> ( 1st |` ( E X. F ) ) Fn ( E X. F ) ) |
22 |
|
fncnvima2 |
|- ( ( 1st |` ( E X. F ) ) Fn ( E X. F ) -> ( `' ( 1st |` ( E X. F ) ) " A ) = { r e. ( E X. F ) | ( ( 1st |` ( E X. F ) ) ` r ) e. A } ) |
23 |
20 21 22
|
mp2b |
|- ( `' ( 1st |` ( E X. F ) ) " A ) = { r e. ( E X. F ) | ( ( 1st |` ( E X. F ) ) ` r ) e. A } |
24 |
|
fvres |
|- ( r e. ( E X. F ) -> ( ( 1st |` ( E X. F ) ) ` r ) = ( 1st ` r ) ) |
25 |
24
|
eleq1d |
|- ( r e. ( E X. F ) -> ( ( ( 1st |` ( E X. F ) ) ` r ) e. A <-> ( 1st ` r ) e. A ) ) |
26 |
25
|
rabbiia |
|- { r e. ( E X. F ) | ( ( 1st |` ( E X. F ) ) ` r ) e. A } = { r e. ( E X. F ) | ( 1st ` r ) e. A } |
27 |
23 26
|
eqtri |
|- ( `' ( 1st |` ( E X. F ) ) " A ) = { r e. ( E X. F ) | ( 1st ` r ) e. A } |
28 |
|
f2ndres |
|- ( 2nd |` ( E X. F ) ) : ( E X. F ) --> F |
29 |
|
ffn |
|- ( ( 2nd |` ( E X. F ) ) : ( E X. F ) --> F -> ( 2nd |` ( E X. F ) ) Fn ( E X. F ) ) |
30 |
|
fncnvima2 |
|- ( ( 2nd |` ( E X. F ) ) Fn ( E X. F ) -> ( `' ( 2nd |` ( E X. F ) ) " B ) = { r e. ( E X. F ) | ( ( 2nd |` ( E X. F ) ) ` r ) e. B } ) |
31 |
28 29 30
|
mp2b |
|- ( `' ( 2nd |` ( E X. F ) ) " B ) = { r e. ( E X. F ) | ( ( 2nd |` ( E X. F ) ) ` r ) e. B } |
32 |
|
fvres |
|- ( r e. ( E X. F ) -> ( ( 2nd |` ( E X. F ) ) ` r ) = ( 2nd ` r ) ) |
33 |
32
|
eleq1d |
|- ( r e. ( E X. F ) -> ( ( ( 2nd |` ( E X. F ) ) ` r ) e. B <-> ( 2nd ` r ) e. B ) ) |
34 |
33
|
rabbiia |
|- { r e. ( E X. F ) | ( ( 2nd |` ( E X. F ) ) ` r ) e. B } = { r e. ( E X. F ) | ( 2nd ` r ) e. B } |
35 |
31 34
|
eqtri |
|- ( `' ( 2nd |` ( E X. F ) ) " B ) = { r e. ( E X. F ) | ( 2nd ` r ) e. B } |
36 |
27 35
|
ineq12i |
|- ( ( `' ( 1st |` ( E X. F ) ) " A ) i^i ( `' ( 2nd |` ( E X. F ) ) " B ) ) = ( { r e. ( E X. F ) | ( 1st ` r ) e. A } i^i { r e. ( E X. F ) | ( 2nd ` r ) e. B } ) |
37 |
19 36
|
eqtr4di |
|- ( ( A C_ E /\ B C_ F ) -> ( A X. B ) = ( ( `' ( 1st |` ( E X. F ) ) " A ) i^i ( `' ( 2nd |` ( E X. F ) ) " B ) ) ) |