Metamath Proof Explorer


Theorem cnre2csqima

Description: Image of a centered square by the canonical bijection from ( RR X. RR ) to CC . (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Hypothesis cnre2csqima.1 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) )
Assertion cnre2csqima ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑌 ∈ ( ℝ × ℝ ) ∧ 𝐷 ∈ ℝ+ ) → ( 𝑌 ∈ ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) × ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) → ( ( abs ‘ ( ℜ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 cnre2csqima.1 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) )
2 ioossre ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ⊆ ℝ
3 ioossre ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ⊆ ℝ
4 xpinpreima2 ( ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ⊆ ℝ ∧ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ⊆ ℝ ) → ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) × ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) = ( ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∩ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) )
5 4 eleq2d ( ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ⊆ ℝ ∧ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ⊆ ℝ ) → ( 𝑌 ∈ ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) × ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ↔ 𝑌 ∈ ( ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∩ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) ) )
6 2 3 5 mp2an ( 𝑌 ∈ ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) × ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ↔ 𝑌 ∈ ( ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∩ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) )
7 elin ( 𝑌 ∈ ( ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∩ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) ↔ ( 𝑌 ∈ ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∧ 𝑌 ∈ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) )
8 simpl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ )
9 8 recnd ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ )
10 ax-icn i ∈ ℂ
11 10 a1i ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → i ∈ ℂ )
12 simpr ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ )
13 12 recnd ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ )
14 11 13 mulcld ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · 𝑦 ) ∈ ℂ )
15 9 14 addcld ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ )
16 reval ( ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ → ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) )
17 15 16 syl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) )
18 crre ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = 𝑥 )
19 17 18 eqtr3d ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) = 𝑥 )
20 19 mpoeq3ia ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 )
21 15 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ )
22 1 a1i ( ⊤ → 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) )
23 df-re ℜ = ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 + ( ∗ ‘ 𝑧 ) ) / 2 ) )
24 23 a1i ( ⊤ → ℜ = ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 + ( ∗ ‘ 𝑧 ) ) / 2 ) ) )
25 id ( 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) )
26 fveq2 ( 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → ( ∗ ‘ 𝑧 ) = ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) )
27 25 26 oveq12d ( 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝑧 + ( ∗ ‘ 𝑧 ) ) = ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) )
28 27 oveq1d ( 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 𝑧 + ( ∗ ‘ 𝑧 ) ) / 2 ) = ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) )
29 21 22 24 28 fmpoco ( ⊤ → ( ℜ ∘ 𝐹 ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) ) )
30 29 mptru ( ℜ ∘ 𝐹 ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( ( ( 𝑥 + ( i · 𝑦 ) ) + ( ∗ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) / 2 ) )
31 df1stres ( 1st ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 )
32 20 30 31 3eqtr4ri ( 1st ↾ ( ℝ × ℝ ) ) = ( ℜ ∘ 𝐹 )
33 15 rgen2 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ
34 1 fnmpo ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ → 𝐹 Fn ( ℝ × ℝ ) )
35 33 34 ax-mp 𝐹 Fn ( ℝ × ℝ )
36 fo1st 1st : V –onto→ V
37 fofn ( 1st : V –onto→ V → 1st Fn V )
38 36 37 ax-mp 1st Fn V
39 xp1st ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st𝑧 ) ∈ ℝ )
40 1 rnmpo ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) }
41 simpr ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) )
42 15 adantr ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) → ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ )
43 41 42 eqeltrd ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) ) → 𝑧 ∈ ℂ )
44 43 ex ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → 𝑧 ∈ ℂ ) )
45 44 rexlimivv ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → 𝑧 ∈ ℂ )
46 45 abssi { 𝑧 ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) } ⊆ ℂ
47 40 46 eqsstri ran 𝐹 ⊆ ℂ
48 simpl ( ( 𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹 ) → 𝑧 ∈ ran 𝐹 )
49 47 48 sseldi ( ( 𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹 ) → 𝑧 ∈ ℂ )
50 simpr ( ( 𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹 ) → 𝑢 ∈ ran 𝐹 )
51 47 50 sseldi ( ( 𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹 ) → 𝑢 ∈ ℂ )
52 49 51 resubd ( ( 𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹 ) → ( ℜ ‘ ( 𝑧𝑢 ) ) = ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝑢 ) ) )
53 32 35 38 39 52 cnre2csqlem ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑌 ∈ ( ℝ × ℝ ) ∧ 𝐷 ∈ ℝ+ ) → ( 𝑌 ∈ ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) → ( abs ‘ ( ℜ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ) )
54 imval ( ( 𝑥 + ( i · 𝑦 ) ) ∈ ℂ → ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) )
55 15 54 syl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) )
56 crim ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = 𝑦 )
57 55 56 eqtr3d ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) = 𝑦 )
58 57 mpoeq3ia ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 )
59 df-im ℑ = ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ ( 𝑧 / i ) ) )
60 59 a1i ( ⊤ → ℑ = ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ ( 𝑧 / i ) ) ) )
61 fvoveq1 ( 𝑧 = ( 𝑥 + ( i · 𝑦 ) ) → ( ℜ ‘ ( 𝑧 / i ) ) = ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) )
62 21 22 60 61 fmpoco ( ⊤ → ( ℑ ∘ 𝐹 ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) ) )
63 62 mptru ( ℑ ∘ 𝐹 ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑥 + ( i · 𝑦 ) ) / i ) ) )
64 df2ndres ( 2nd ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 )
65 58 63 64 3eqtr4ri ( 2nd ↾ ( ℝ × ℝ ) ) = ( ℑ ∘ 𝐹 )
66 fo2nd 2nd : V –onto→ V
67 fofn ( 2nd : V –onto→ V → 2nd Fn V )
68 66 67 ax-mp 2nd Fn V
69 xp2nd ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd𝑧 ) ∈ ℝ )
70 49 51 imsubd ( ( 𝑧 ∈ ran 𝐹𝑢 ∈ ran 𝐹 ) → ( ℑ ‘ ( 𝑧𝑢 ) ) = ( ( ℑ ‘ 𝑧 ) − ( ℑ ‘ 𝑢 ) ) )
71 65 35 68 69 70 cnre2csqlem ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑌 ∈ ( ℝ × ℝ ) ∧ 𝐷 ∈ ℝ+ ) → ( 𝑌 ∈ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) → ( abs ‘ ( ℑ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ) )
72 53 71 anim12d ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑌 ∈ ( ℝ × ℝ ) ∧ 𝐷 ∈ ℝ+ ) → ( ( 𝑌 ∈ ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∧ 𝑌 ∈ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) → ( ( abs ‘ ( ℜ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ) ) )
73 7 72 syl5bi ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑌 ∈ ( ℝ × ℝ ) ∧ 𝐷 ∈ ℝ+ ) → ( 𝑌 ∈ ( ( ( 1st ↾ ( ℝ × ℝ ) ) “ ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) ) ∩ ( ( 2nd ↾ ( ℝ × ℝ ) ) “ ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) ) → ( ( abs ‘ ( ℜ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ) ) )
74 6 73 syl5bi ( ( 𝑋 ∈ ( ℝ × ℝ ) ∧ 𝑌 ∈ ( ℝ × ℝ ) ∧ 𝐷 ∈ ℝ+ ) → ( 𝑌 ∈ ( ( ( ( 1st𝑋 ) − 𝐷 ) (,) ( ( 1st𝑋 ) + 𝐷 ) ) × ( ( ( 2nd𝑋 ) − 𝐷 ) (,) ( ( 2nd𝑋 ) + 𝐷 ) ) ) → ( ( abs ‘ ( ℜ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ∧ ( abs ‘ ( ℑ ‘ ( ( 𝐹𝑌 ) − ( 𝐹𝑋 ) ) ) ) < 𝐷 ) ) )