| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df2nd2 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝑧 = 𝑦 } = ( 2nd ↾ ( V × V ) ) |
| 2 |
1
|
reseq1i |
⊢ ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝑧 = 𝑦 } ↾ ( 𝐴 × 𝐵 ) ) = ( ( 2nd ↾ ( V × V ) ) ↾ ( 𝐴 × 𝐵 ) ) |
| 3 |
|
resoprab |
⊢ ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝑧 = 𝑦 } ↾ ( 𝐴 × 𝐵 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝑦 ) } |
| 4 |
|
resres |
⊢ ( ( 2nd ↾ ( V × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 2nd ↾ ( ( V × V ) ∩ ( 𝐴 × 𝐵 ) ) ) |
| 5 |
|
incom |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( V × V ) ) = ( ( V × V ) ∩ ( 𝐴 × 𝐵 ) ) |
| 6 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
| 7 |
|
dfss2 |
⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( V × V ) ↔ ( ( 𝐴 × 𝐵 ) ∩ ( V × V ) ) = ( 𝐴 × 𝐵 ) ) |
| 8 |
6 7
|
mpbi |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( V × V ) ) = ( 𝐴 × 𝐵 ) |
| 9 |
5 8
|
eqtr3i |
⊢ ( ( V × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) |
| 10 |
9
|
reseq2i |
⊢ ( 2nd ↾ ( ( V × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ( 2nd ↾ ( 𝐴 × 𝐵 ) ) |
| 11 |
4 10
|
eqtri |
⊢ ( ( 2nd ↾ ( V × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 2nd ↾ ( 𝐴 × 𝐵 ) ) |
| 12 |
2 3 11
|
3eqtr3ri |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝑦 ) } |
| 13 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑦 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝑦 ) } |
| 14 |
12 13
|
eqtr4i |
⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑦 ) |