Step |
Hyp |
Ref |
Expression |
1 |
|
resopab |
⊢ ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } ↾ ( 𝐴 × 𝐵 ) ) = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) } |
2 |
|
19.42vv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) ) |
3 |
|
an12 |
⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) ↔ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) ) |
4 |
|
eleq1 |
⊢ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ) ) |
5 |
|
opelxp |
⊢ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
6 |
4 5
|
bitrdi |
⊢ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) ↔ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ) |
9 |
3 8
|
bitri |
⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) ↔ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ) |
10 |
9
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ) |
11 |
2 10
|
bitr3i |
⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ) |
12 |
11
|
opabbii |
⊢ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) } = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) } |
13 |
1 12
|
eqtri |
⊢ ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } ↾ ( 𝐴 × 𝐵 ) ) = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) } |
14 |
|
dfoprab2 |
⊢ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } |
15 |
14
|
reseq1i |
⊢ ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ↾ ( 𝐴 × 𝐵 ) ) = ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } ↾ ( 𝐴 × 𝐵 ) ) |
16 |
|
dfoprab2 |
⊢ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) } |
17 |
13 15 16
|
3eqtr4i |
⊢ ( { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ↾ ( 𝐴 × 𝐵 ) ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } |