| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre2csqlem.1 |
|- ( G |` ( RR X. RR ) ) = ( H o. F ) |
| 2 |
|
cnre2csqlem.2 |
|- F Fn ( RR X. RR ) |
| 3 |
|
cnre2csqlem.3 |
|- G Fn _V |
| 4 |
|
cnre2csqlem.4 |
|- ( x e. ( RR X. RR ) -> ( G ` x ) e. RR ) |
| 5 |
|
cnre2csqlem.5 |
|- ( ( x e. ran F /\ y e. ran F ) -> ( H ` ( x - y ) ) = ( ( H ` x ) - ( H ` y ) ) ) |
| 6 |
|
ssv |
|- ( RR X. RR ) C_ _V |
| 7 |
|
fnssres |
|- ( ( G Fn _V /\ ( RR X. RR ) C_ _V ) -> ( G |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
| 8 |
3 6 7
|
mp2an |
|- ( G |` ( RR X. RR ) ) Fn ( RR X. RR ) |
| 9 |
|
elpreima |
|- ( ( G |` ( RR X. RR ) ) Fn ( RR X. RR ) -> ( Y e. ( `' ( G |` ( RR X. RR ) ) " ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) <-> ( Y e. ( RR X. RR ) /\ ( ( G |` ( RR X. RR ) ) ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) ) ) |
| 10 |
8 9
|
mp1i |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( `' ( G |` ( RR X. RR ) ) " ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) <-> ( Y e. ( RR X. RR ) /\ ( ( G |` ( RR X. RR ) ) ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) ) ) |
| 11 |
10
|
simplbda |
|- ( ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) /\ Y e. ( `' ( G |` ( RR X. RR ) ) " ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) ) -> ( ( G |` ( RR X. RR ) ) ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) |
| 12 |
11
|
ex |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( `' ( G |` ( RR X. RR ) ) " ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( ( G |` ( RR X. RR ) ) ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) ) |
| 13 |
|
simp2 |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> Y e. ( RR X. RR ) ) |
| 14 |
|
fvres |
|- ( Y e. ( RR X. RR ) -> ( ( G |` ( RR X. RR ) ) ` Y ) = ( G ` Y ) ) |
| 15 |
13 14
|
syl |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G |` ( RR X. RR ) ) ` Y ) = ( G ` Y ) ) |
| 16 |
15
|
eleq1d |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( ( G |` ( RR X. RR ) ) ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) <-> ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) ) |
| 17 |
|
simp1 |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> X e. ( RR X. RR ) ) |
| 18 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
| 19 |
18
|
eleq1d |
|- ( x = X -> ( ( G ` x ) e. RR <-> ( G ` X ) e. RR ) ) |
| 20 |
19 4
|
vtoclga |
|- ( X e. ( RR X. RR ) -> ( G ` X ) e. RR ) |
| 21 |
17 20
|
syl |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( G ` X ) e. RR ) |
| 22 |
|
simp3 |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> D e. RR+ ) |
| 23 |
22
|
rpred |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> D e. RR ) |
| 24 |
21 23
|
resubcld |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` X ) - D ) e. RR ) |
| 25 |
24
|
rexrd |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` X ) - D ) e. RR* ) |
| 26 |
21 23
|
readdcld |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` X ) + D ) e. RR ) |
| 27 |
26
|
rexrd |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` X ) + D ) e. RR* ) |
| 28 |
|
elioo2 |
|- ( ( ( ( G ` X ) - D ) e. RR* /\ ( ( G ` X ) + D ) e. RR* ) -> ( ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) <-> ( ( G ` Y ) e. RR /\ ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) ) |
| 29 |
25 27 28
|
syl2anc |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) <-> ( ( G ` Y ) e. RR /\ ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) ) |
| 30 |
29
|
biimpa |
|- ( ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) /\ ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( ( G ` Y ) e. RR /\ ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) |
| 31 |
30
|
simp2d |
|- ( ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) /\ ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( ( G ` X ) - D ) < ( G ` Y ) ) |
| 32 |
30
|
simp3d |
|- ( ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) /\ ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( G ` Y ) < ( ( G ` X ) + D ) ) |
| 33 |
31 32
|
jca |
|- ( ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) /\ ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) |
| 34 |
33
|
ex |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) -> ( ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) ) |
| 35 |
16 34
|
sylbid |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( ( G |` ( RR X. RR ) ) ` Y ) e. ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) -> ( ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) ) |
| 36 |
|
fveq2 |
|- ( x = Y -> ( G ` x ) = ( G ` Y ) ) |
| 37 |
36
|
eleq1d |
|- ( x = Y -> ( ( G ` x ) e. RR <-> ( G ` Y ) e. RR ) ) |
| 38 |
37 4
|
vtoclga |
|- ( Y e. ( RR X. RR ) -> ( G ` Y ) e. RR ) |
| 39 |
13 38
|
syl |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( G ` Y ) e. RR ) |
| 40 |
|
absdiflt |
|- ( ( ( G ` Y ) e. RR /\ ( G ` X ) e. RR /\ D e. RR ) -> ( ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) < D <-> ( ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) ) ) |
| 41 |
40
|
biimprd |
|- ( ( ( G ` Y ) e. RR /\ ( G ` X ) e. RR /\ D e. RR ) -> ( ( ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) < D ) ) |
| 42 |
39 21 23 41
|
syl3anc |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( ( ( G ` X ) - D ) < ( G ` Y ) /\ ( G ` Y ) < ( ( G ` X ) + D ) ) -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) < D ) ) |
| 43 |
12 35 42
|
3syld |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( `' ( G |` ( RR X. RR ) ) " ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) < D ) ) |
| 44 |
|
fnfvelrn |
|- ( ( F Fn ( RR X. RR ) /\ Y e. ( RR X. RR ) ) -> ( F ` Y ) e. ran F ) |
| 45 |
2 13 44
|
sylancr |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( F ` Y ) e. ran F ) |
| 46 |
|
fnfvelrn |
|- ( ( F Fn ( RR X. RR ) /\ X e. ( RR X. RR ) ) -> ( F ` X ) e. ran F ) |
| 47 |
2 17 46
|
sylancr |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( F ` X ) e. ran F ) |
| 48 |
|
fvoveq1 |
|- ( x = ( F ` Y ) -> ( H ` ( x - y ) ) = ( H ` ( ( F ` Y ) - y ) ) ) |
| 49 |
|
fveq2 |
|- ( x = ( F ` Y ) -> ( H ` x ) = ( H ` ( F ` Y ) ) ) |
| 50 |
49
|
oveq1d |
|- ( x = ( F ` Y ) -> ( ( H ` x ) - ( H ` y ) ) = ( ( H ` ( F ` Y ) ) - ( H ` y ) ) ) |
| 51 |
48 50
|
eqeq12d |
|- ( x = ( F ` Y ) -> ( ( H ` ( x - y ) ) = ( ( H ` x ) - ( H ` y ) ) <-> ( H ` ( ( F ` Y ) - y ) ) = ( ( H ` ( F ` Y ) ) - ( H ` y ) ) ) ) |
| 52 |
|
oveq2 |
|- ( y = ( F ` X ) -> ( ( F ` Y ) - y ) = ( ( F ` Y ) - ( F ` X ) ) ) |
| 53 |
52
|
fveq2d |
|- ( y = ( F ` X ) -> ( H ` ( ( F ` Y ) - y ) ) = ( H ` ( ( F ` Y ) - ( F ` X ) ) ) ) |
| 54 |
|
fveq2 |
|- ( y = ( F ` X ) -> ( H ` y ) = ( H ` ( F ` X ) ) ) |
| 55 |
54
|
oveq2d |
|- ( y = ( F ` X ) -> ( ( H ` ( F ` Y ) ) - ( H ` y ) ) = ( ( H ` ( F ` Y ) ) - ( H ` ( F ` X ) ) ) ) |
| 56 |
53 55
|
eqeq12d |
|- ( y = ( F ` X ) -> ( ( H ` ( ( F ` Y ) - y ) ) = ( ( H ` ( F ` Y ) ) - ( H ` y ) ) <-> ( H ` ( ( F ` Y ) - ( F ` X ) ) ) = ( ( H ` ( F ` Y ) ) - ( H ` ( F ` X ) ) ) ) ) |
| 57 |
51 56 5
|
vtocl2ga |
|- ( ( ( F ` Y ) e. ran F /\ ( F ` X ) e. ran F ) -> ( H ` ( ( F ` Y ) - ( F ` X ) ) ) = ( ( H ` ( F ` Y ) ) - ( H ` ( F ` X ) ) ) ) |
| 58 |
45 47 57
|
syl2anc |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( H ` ( ( F ` Y ) - ( F ` X ) ) ) = ( ( H ` ( F ` Y ) ) - ( H ` ( F ` X ) ) ) ) |
| 59 |
1
|
fveq1i |
|- ( ( G |` ( RR X. RR ) ) ` Y ) = ( ( H o. F ) ` Y ) |
| 60 |
|
fvco2 |
|- ( ( F Fn ( RR X. RR ) /\ Y e. ( RR X. RR ) ) -> ( ( H o. F ) ` Y ) = ( H ` ( F ` Y ) ) ) |
| 61 |
2 13 60
|
sylancr |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( H o. F ) ` Y ) = ( H ` ( F ` Y ) ) ) |
| 62 |
59 15 61
|
3eqtr3a |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( G ` Y ) = ( H ` ( F ` Y ) ) ) |
| 63 |
1
|
fveq1i |
|- ( ( G |` ( RR X. RR ) ) ` X ) = ( ( H o. F ) ` X ) |
| 64 |
|
fvres |
|- ( X e. ( RR X. RR ) -> ( ( G |` ( RR X. RR ) ) ` X ) = ( G ` X ) ) |
| 65 |
17 64
|
syl |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G |` ( RR X. RR ) ) ` X ) = ( G ` X ) ) |
| 66 |
|
fvco2 |
|- ( ( F Fn ( RR X. RR ) /\ X e. ( RR X. RR ) ) -> ( ( H o. F ) ` X ) = ( H ` ( F ` X ) ) ) |
| 67 |
2 17 66
|
sylancr |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( H o. F ) ` X ) = ( H ` ( F ` X ) ) ) |
| 68 |
63 65 67
|
3eqtr3a |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( G ` X ) = ( H ` ( F ` X ) ) ) |
| 69 |
62 68
|
oveq12d |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( G ` Y ) - ( G ` X ) ) = ( ( H ` ( F ` Y ) ) - ( H ` ( F ` X ) ) ) ) |
| 70 |
58 69
|
eqtr4d |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( H ` ( ( F ` Y ) - ( F ` X ) ) ) = ( ( G ` Y ) - ( G ` X ) ) ) |
| 71 |
70
|
fveq2d |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( abs ` ( H ` ( ( F ` Y ) - ( F ` X ) ) ) ) = ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) ) |
| 72 |
71
|
breq1d |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( ( abs ` ( H ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D <-> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) < D ) ) |
| 73 |
43 72
|
sylibrd |
|- ( ( X e. ( RR X. RR ) /\ Y e. ( RR X. RR ) /\ D e. RR+ ) -> ( Y e. ( `' ( G |` ( RR X. RR ) ) " ( ( ( G ` X ) - D ) (,) ( ( G ` X ) + D ) ) ) -> ( abs ` ( H ` ( ( F ` Y ) - ( F ` X ) ) ) ) < D ) ) |