Step |
Hyp |
Ref |
Expression |
1 |
|
cnre2csqlem.1 |
|
2 |
|
cnre2csqlem.2 |
|
3 |
|
cnre2csqlem.3 |
|
4 |
|
cnre2csqlem.4 |
|
5 |
|
cnre2csqlem.5 |
|
6 |
|
ssv |
|
7 |
|
fnssres |
|
8 |
3 6 7
|
mp2an |
|
9 |
|
elpreima |
|
10 |
8 9
|
mp1i |
|
11 |
10
|
simplbda |
|
12 |
11
|
ex |
|
13 |
|
simp2 |
|
14 |
|
fvres |
|
15 |
13 14
|
syl |
|
16 |
15
|
eleq1d |
|
17 |
|
simp1 |
|
18 |
|
fveq2 |
|
19 |
18
|
eleq1d |
|
20 |
19 4
|
vtoclga |
|
21 |
17 20
|
syl |
|
22 |
|
simp3 |
|
23 |
22
|
rpred |
|
24 |
21 23
|
resubcld |
|
25 |
24
|
rexrd |
|
26 |
21 23
|
readdcld |
|
27 |
26
|
rexrd |
|
28 |
|
elioo2 |
|
29 |
25 27 28
|
syl2anc |
|
30 |
29
|
biimpa |
|
31 |
30
|
simp2d |
|
32 |
30
|
simp3d |
|
33 |
31 32
|
jca |
|
34 |
33
|
ex |
|
35 |
16 34
|
sylbid |
|
36 |
|
fveq2 |
|
37 |
36
|
eleq1d |
|
38 |
37 4
|
vtoclga |
|
39 |
13 38
|
syl |
|
40 |
|
absdiflt |
|
41 |
40
|
biimprd |
|
42 |
39 21 23 41
|
syl3anc |
|
43 |
12 35 42
|
3syld |
|
44 |
|
fnfvelrn |
|
45 |
2 13 44
|
sylancr |
|
46 |
|
fnfvelrn |
|
47 |
2 17 46
|
sylancr |
|
48 |
|
fvoveq1 |
|
49 |
|
fveq2 |
|
50 |
49
|
oveq1d |
|
51 |
48 50
|
eqeq12d |
|
52 |
|
oveq2 |
|
53 |
52
|
fveq2d |
|
54 |
|
fveq2 |
|
55 |
54
|
oveq2d |
|
56 |
53 55
|
eqeq12d |
|
57 |
51 56 5
|
vtocl2ga |
|
58 |
45 47 57
|
syl2anc |
|
59 |
1
|
fveq1i |
|
60 |
|
fvco2 |
|
61 |
2 13 60
|
sylancr |
|
62 |
59 15 61
|
3eqtr3a |
|
63 |
1
|
fveq1i |
|
64 |
|
fvres |
|
65 |
17 64
|
syl |
|
66 |
|
fvco2 |
|
67 |
2 17 66
|
sylancr |
|
68 |
63 65 67
|
3eqtr3a |
|
69 |
62 68
|
oveq12d |
|
70 |
58 69
|
eqtr4d |
|
71 |
70
|
fveq2d |
|
72 |
71
|
breq1d |
|
73 |
43 72
|
sylibrd |
|