| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre2csqlem.1 |
|
| 2 |
|
cnre2csqlem.2 |
|
| 3 |
|
cnre2csqlem.3 |
|
| 4 |
|
cnre2csqlem.4 |
|
| 5 |
|
cnre2csqlem.5 |
|
| 6 |
|
ssv |
|
| 7 |
|
fnssres |
|
| 8 |
3 6 7
|
mp2an |
|
| 9 |
|
elpreima |
|
| 10 |
8 9
|
mp1i |
|
| 11 |
10
|
simplbda |
|
| 12 |
11
|
ex |
|
| 13 |
|
simp2 |
|
| 14 |
|
fvres |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
eleq1d |
|
| 17 |
|
simp1 |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
eleq1d |
|
| 20 |
19 4
|
vtoclga |
|
| 21 |
17 20
|
syl |
|
| 22 |
|
simp3 |
|
| 23 |
22
|
rpred |
|
| 24 |
21 23
|
resubcld |
|
| 25 |
24
|
rexrd |
|
| 26 |
21 23
|
readdcld |
|
| 27 |
26
|
rexrd |
|
| 28 |
|
elioo2 |
|
| 29 |
25 27 28
|
syl2anc |
|
| 30 |
29
|
biimpa |
|
| 31 |
30
|
simp2d |
|
| 32 |
30
|
simp3d |
|
| 33 |
31 32
|
jca |
|
| 34 |
33
|
ex |
|
| 35 |
16 34
|
sylbid |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
eleq1d |
|
| 38 |
37 4
|
vtoclga |
|
| 39 |
13 38
|
syl |
|
| 40 |
|
absdiflt |
|
| 41 |
40
|
biimprd |
|
| 42 |
39 21 23 41
|
syl3anc |
|
| 43 |
12 35 42
|
3syld |
|
| 44 |
|
fnfvelrn |
|
| 45 |
2 13 44
|
sylancr |
|
| 46 |
|
fnfvelrn |
|
| 47 |
2 17 46
|
sylancr |
|
| 48 |
|
fvoveq1 |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
oveq1d |
|
| 51 |
48 50
|
eqeq12d |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
fveq2d |
|
| 54 |
|
fveq2 |
|
| 55 |
54
|
oveq2d |
|
| 56 |
53 55
|
eqeq12d |
|
| 57 |
51 56 5
|
vtocl2ga |
|
| 58 |
45 47 57
|
syl2anc |
|
| 59 |
1
|
fveq1i |
|
| 60 |
|
fvco2 |
|
| 61 |
2 13 60
|
sylancr |
|
| 62 |
59 15 61
|
3eqtr3a |
|
| 63 |
1
|
fveq1i |
|
| 64 |
|
fvres |
|
| 65 |
17 64
|
syl |
|
| 66 |
|
fvco2 |
|
| 67 |
2 17 66
|
sylancr |
|
| 68 |
63 65 67
|
3eqtr3a |
|
| 69 |
62 68
|
oveq12d |
|
| 70 |
58 69
|
eqtr4d |
|
| 71 |
70
|
fveq2d |
|
| 72 |
71
|
breq1d |
|
| 73 |
43 72
|
sylibrd |
|