Metamath Proof Explorer


Theorem sqsscirc2

Description: The complex square of side D is a subset of the complex disc of radius D . (Contributed by Thierry Arnoux, 25-Sep-2017)

Ref Expression
Assertion sqsscirc2 A B D + B A < D 2 B A < D 2 B A < D

Proof

Step Hyp Ref Expression
1 simplr A B D + B
2 simpll A B D + A
3 1 2 subcld A B D + B A
4 3 recld A B D + B A
5 4 recnd A B D + B A
6 5 abscld A B D + B A
7 5 absge0d A B D + 0 B A
8 6 7 jca A B D + B A 0 B A
9 3 imcld A B D + B A
10 9 recnd A B D + B A
11 10 abscld A B D + B A
12 10 absge0d A B D + 0 B A
13 11 12 jca A B D + B A 0 B A
14 simpr A B D + D +
15 sqsscirc1 B A 0 B A B A 0 B A D + B A < D 2 B A < D 2 B A 2 + B A 2 < D
16 8 13 14 15 syl21anc A B D + B A < D 2 B A < D 2 B A 2 + B A 2 < D
17 3 absval2d A B D + B A = B A 2 + B A 2
18 17 breq1d A B D + B A < D B A 2 + B A 2 < D
19 absresq B A B A 2 = B A 2
20 4 19 syl A B D + B A 2 = B A 2
21 absresq B A B A 2 = B A 2
22 9 21 syl A B D + B A 2 = B A 2
23 20 22 oveq12d A B D + B A 2 + B A 2 = B A 2 + B A 2
24 23 fveq2d A B D + B A 2 + B A 2 = B A 2 + B A 2
25 24 breq1d A B D + B A 2 + B A 2 < D B A 2 + B A 2 < D
26 18 25 bitr4d A B D + B A < D B A 2 + B A 2 < D
27 16 26 sylibrd A B D + B A < D 2 B A < D 2 B A < D