Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
3 |
|
dya2ioc.2 |
⊢ 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) |
4 |
|
ssrab2 |
⊢ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ ran 𝑅 |
5 |
1 2 3
|
dya2iocrfn |
⊢ 𝑅 Fn ( ran 𝐼 × ran 𝐼 ) |
6 |
|
zex |
⊢ ℤ ∈ V |
7 |
6 6
|
mpoex |
⊢ ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) ∈ V |
8 |
2 7
|
eqeltri |
⊢ 𝐼 ∈ V |
9 |
8
|
rnex |
⊢ ran 𝐼 ∈ V |
10 |
9 9
|
xpex |
⊢ ( ran 𝐼 × ran 𝐼 ) ∈ V |
11 |
|
fnex |
⊢ ( ( 𝑅 Fn ( ran 𝐼 × ran 𝐼 ) ∧ ( ran 𝐼 × ran 𝐼 ) ∈ V ) → 𝑅 ∈ V ) |
12 |
5 10 11
|
mp2an |
⊢ 𝑅 ∈ V |
13 |
12
|
rnex |
⊢ ran 𝑅 ∈ V |
14 |
13
|
elpw2 |
⊢ ( { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ∈ 𝒫 ran 𝑅 ↔ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ ran 𝑅 ) |
15 |
4 14
|
mpbir |
⊢ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ∈ 𝒫 ran 𝑅 |
16 |
15
|
a1i |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ∈ 𝒫 ran 𝑅 ) |
17 |
|
rex0 |
⊢ ¬ ∃ 𝑧 ∈ ∅ ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) |
18 |
|
rexeq |
⊢ ( 𝐴 = ∅ → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ↔ ∃ 𝑧 ∈ ∅ ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) ) |
19 |
17 18
|
mtbiri |
⊢ ( 𝐴 = ∅ → ¬ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
20 |
19
|
ralrimivw |
⊢ ( 𝐴 = ∅ → ∀ 𝑏 ∈ ran 𝑅 ¬ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
21 |
|
rabeq0 |
⊢ ( { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = ∅ ↔ ∀ 𝑏 ∈ ran 𝑅 ¬ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ) |
22 |
20 21
|
sylibr |
⊢ ( 𝐴 = ∅ → { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = ∅ ) |
23 |
22
|
unieqd |
⊢ ( 𝐴 = ∅ → ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = ∪ ∅ ) |
24 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
25 |
23 24
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = ∅ ) |
26 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
27 |
25 26
|
eqsstrdi |
⊢ ( 𝐴 = ∅ → ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ 𝐴 ) |
28 |
|
elequ2 |
⊢ ( 𝑏 = 𝑝 → ( 𝑧 ∈ 𝑏 ↔ 𝑧 ∈ 𝑝 ) ) |
29 |
|
sseq1 |
⊢ ( 𝑏 = 𝑝 → ( 𝑏 ⊆ 𝐴 ↔ 𝑝 ⊆ 𝐴 ) ) |
30 |
28 29
|
anbi12d |
⊢ ( 𝑏 = 𝑝 → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ↔ ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) ) |
31 |
30
|
rexbidv |
⊢ ( 𝑏 = 𝑝 → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) ) |
32 |
31
|
elrab |
⊢ ( 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ↔ ( 𝑝 ∈ ran 𝑅 ∧ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) ) |
33 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) → 𝑝 ⊆ 𝐴 ) |
34 |
33
|
reximi |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) → ∃ 𝑧 ∈ 𝐴 𝑝 ⊆ 𝐴 ) |
35 |
|
r19.9rzv |
⊢ ( 𝐴 ≠ ∅ → ( 𝑝 ⊆ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑝 ⊆ 𝐴 ) ) |
36 |
34 35
|
syl5ibr |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) → 𝑝 ⊆ 𝐴 ) ) |
37 |
36
|
adantld |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝑝 ∈ ran 𝑅 ∧ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑝 ⊆ 𝐴 ) ) |
38 |
32 37
|
syl5bi |
⊢ ( 𝐴 ≠ ∅ → ( 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } → 𝑝 ⊆ 𝐴 ) ) |
39 |
38
|
ralrimiv |
⊢ ( 𝐴 ≠ ∅ → ∀ 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } 𝑝 ⊆ 𝐴 ) |
40 |
|
unissb |
⊢ ( ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ 𝐴 ↔ ∀ 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } 𝑝 ⊆ 𝐴 ) |
41 |
39 40
|
sylibr |
⊢ ( 𝐴 ≠ ∅ → ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ 𝐴 ) |
42 |
27 41
|
pm2.61ine |
⊢ ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ 𝐴 |
43 |
42
|
a1i |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ⊆ 𝐴 ) |
44 |
1 2 3
|
dya2iocnei |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑚 ∈ 𝐴 ) → ∃ 𝑝 ∈ ran 𝑅 ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) |
45 |
|
simpl |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑝 ∈ ran 𝑅 ) |
46 |
|
ssel2 |
⊢ ( ( 𝑝 ⊆ 𝐴 ∧ 𝑚 ∈ 𝑝 ) → 𝑚 ∈ 𝐴 ) |
47 |
46
|
ancoms |
⊢ ( ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) → 𝑚 ∈ 𝐴 ) |
48 |
47
|
adantl |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑚 ∈ 𝐴 ) |
49 |
|
simpr |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) |
50 |
|
elequ1 |
⊢ ( 𝑧 = 𝑚 → ( 𝑧 ∈ 𝑝 ↔ 𝑚 ∈ 𝑝 ) ) |
51 |
50
|
anbi1d |
⊢ ( 𝑧 = 𝑚 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ↔ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) ) |
52 |
51
|
rspcev |
⊢ ( ( 𝑚 ∈ 𝐴 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) |
53 |
48 49 52
|
syl2anc |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) |
54 |
45 53
|
jca |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → ( 𝑝 ∈ ran 𝑅 ∧ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) ) |
55 |
54 32
|
sylibr |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ) |
56 |
|
simprl |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → 𝑚 ∈ 𝑝 ) |
57 |
55 56
|
jca |
⊢ ( ( 𝑝 ∈ ran 𝑅 ∧ ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) ) → ( 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ∧ 𝑚 ∈ 𝑝 ) ) |
58 |
57
|
reximi2 |
⊢ ( ∃ 𝑝 ∈ ran 𝑅 ( 𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴 ) → ∃ 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } 𝑚 ∈ 𝑝 ) |
59 |
44 58
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑚 ∈ 𝐴 ) → ∃ 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } 𝑚 ∈ 𝑝 ) |
60 |
|
eluni2 |
⊢ ( 𝑚 ∈ ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ↔ ∃ 𝑝 ∈ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } 𝑚 ∈ 𝑝 ) |
61 |
59 60
|
sylibr |
⊢ ( ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ) |
62 |
43 61
|
eqelssd |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = 𝐴 ) |
63 |
|
unieq |
⊢ ( 𝑐 = { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } → ∪ 𝑐 = ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ) |
64 |
63
|
eqeq1d |
⊢ ( 𝑐 = { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } → ( ∪ 𝑐 = 𝐴 ↔ ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = 𝐴 ) ) |
65 |
64
|
rspcev |
⊢ ( ( { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } ∈ 𝒫 ran 𝑅 ∧ ∪ { 𝑏 ∈ ran 𝑅 ∣ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴 ) } = 𝐴 ) → ∃ 𝑐 ∈ 𝒫 ran 𝑅 ∪ 𝑐 = 𝐴 ) |
66 |
16 62 65
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝐽 ×t 𝐽 ) → ∃ 𝑐 ∈ 𝒫 ran 𝑅 ∪ 𝑐 = 𝐴 ) |