| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 3 |
|
dya2ioc.2 |
⊢ 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) ) |
| 4 |
|
unissb |
⊢ ( ∪ ran 𝑅 ⊆ ( ℝ × ℝ ) ↔ ∀ 𝑑 ∈ ran 𝑅 𝑑 ⊆ ( ℝ × ℝ ) ) |
| 5 |
|
vex |
⊢ 𝑢 ∈ V |
| 6 |
|
vex |
⊢ 𝑣 ∈ V |
| 7 |
5 6
|
xpex |
⊢ ( 𝑢 × 𝑣 ) ∈ V |
| 8 |
3 7
|
elrnmpo |
⊢ ( 𝑑 ∈ ran 𝑅 ↔ ∃ 𝑢 ∈ ran 𝐼 ∃ 𝑣 ∈ ran 𝐼 𝑑 = ( 𝑢 × 𝑣 ) ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼 ) ∧ 𝑑 = ( 𝑢 × 𝑣 ) ) → 𝑑 = ( 𝑢 × 𝑣 ) ) |
| 10 |
|
pwssb |
⊢ ( ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀ 𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ ) |
| 11 |
|
ovex |
⊢ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V |
| 12 |
2 11
|
elrnmpo |
⊢ ( 𝑑 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑥 ∈ ℤ ) |
| 15 |
14
|
zred |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 16 |
|
2re |
⊢ 2 ∈ ℝ |
| 17 |
16
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 2 ∈ ℝ ) |
| 18 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 19 |
18
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 2 ≠ 0 ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ℤ ) |
| 21 |
17 19 20
|
reexpclzd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 22 |
|
2cnd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 2 ∈ ℂ ) |
| 23 |
22 19 20
|
expne0d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 24 |
15 21 23
|
redivcld |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 25 |
|
1red |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 1 ∈ ℝ ) |
| 26 |
15 25
|
readdcld |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 27 |
26 21 23
|
redivcld |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 28 |
27
|
rexrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) |
| 29 |
|
icossre |
⊢ ( ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) → ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ ) |
| 30 |
24 28 29
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ ) |
| 31 |
13 30
|
eqsstrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑑 ⊆ ℝ ) |
| 32 |
31
|
ex |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) → 𝑑 ⊆ ℝ ) ) |
| 33 |
32
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) → 𝑑 ⊆ ℝ ) |
| 34 |
12 33
|
sylbi |
⊢ ( 𝑑 ∈ ran 𝐼 → 𝑑 ⊆ ℝ ) |
| 35 |
10 34
|
mprgbir |
⊢ ran 𝐼 ⊆ 𝒫 ℝ |
| 36 |
35
|
sseli |
⊢ ( 𝑢 ∈ ran 𝐼 → 𝑢 ∈ 𝒫 ℝ ) |
| 37 |
36
|
elpwid |
⊢ ( 𝑢 ∈ ran 𝐼 → 𝑢 ⊆ ℝ ) |
| 38 |
35
|
sseli |
⊢ ( 𝑣 ∈ ran 𝐼 → 𝑣 ∈ 𝒫 ℝ ) |
| 39 |
38
|
elpwid |
⊢ ( 𝑣 ∈ ran 𝐼 → 𝑣 ⊆ ℝ ) |
| 40 |
|
xpss12 |
⊢ ( ( 𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ ) → ( 𝑢 × 𝑣 ) ⊆ ( ℝ × ℝ ) ) |
| 41 |
37 39 40
|
syl2an |
⊢ ( ( 𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼 ) → ( 𝑢 × 𝑣 ) ⊆ ( ℝ × ℝ ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼 ) ∧ 𝑑 = ( 𝑢 × 𝑣 ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ℝ × ℝ ) ) |
| 43 |
9 42
|
eqsstrd |
⊢ ( ( ( 𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼 ) ∧ 𝑑 = ( 𝑢 × 𝑣 ) ) → 𝑑 ⊆ ( ℝ × ℝ ) ) |
| 44 |
43
|
ex |
⊢ ( ( 𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼 ) → ( 𝑑 = ( 𝑢 × 𝑣 ) → 𝑑 ⊆ ( ℝ × ℝ ) ) ) |
| 45 |
44
|
rexlimivv |
⊢ ( ∃ 𝑢 ∈ ran 𝐼 ∃ 𝑣 ∈ ran 𝐼 𝑑 = ( 𝑢 × 𝑣 ) → 𝑑 ⊆ ( ℝ × ℝ ) ) |
| 46 |
8 45
|
sylbi |
⊢ ( 𝑑 ∈ ran 𝑅 → 𝑑 ⊆ ( ℝ × ℝ ) ) |
| 47 |
4 46
|
mprgbir |
⊢ ∪ ran 𝑅 ⊆ ( ℝ × ℝ ) |
| 48 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 49 |
1 48
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 50 |
49 49
|
txtopi |
⊢ ( 𝐽 ×t 𝐽 ) ∈ Top |
| 51 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 52 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 53 |
51 52
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
| 54 |
49 49 53 53
|
txunii |
⊢ ( ℝ × ℝ ) = ∪ ( 𝐽 ×t 𝐽 ) |
| 55 |
54
|
topopn |
⊢ ( ( 𝐽 ×t 𝐽 ) ∈ Top → ( ℝ × ℝ ) ∈ ( 𝐽 ×t 𝐽 ) ) |
| 56 |
1 2 3
|
dya2iocuni |
⊢ ( ( ℝ × ℝ ) ∈ ( 𝐽 ×t 𝐽 ) → ∃ 𝑐 ∈ 𝒫 ran 𝑅 ∪ 𝑐 = ( ℝ × ℝ ) ) |
| 57 |
50 55 56
|
mp2b |
⊢ ∃ 𝑐 ∈ 𝒫 ran 𝑅 ∪ 𝑐 = ( ℝ × ℝ ) |
| 58 |
|
simpr |
⊢ ( ( 𝑐 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑐 = ( ℝ × ℝ ) ) → ∪ 𝑐 = ( ℝ × ℝ ) ) |
| 59 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 ran 𝑅 → 𝑐 ⊆ ran 𝑅 ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝑐 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑐 = ( ℝ × ℝ ) ) → 𝑐 ⊆ ran 𝑅 ) |
| 61 |
60
|
unissd |
⊢ ( ( 𝑐 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑐 = ( ℝ × ℝ ) ) → ∪ 𝑐 ⊆ ∪ ran 𝑅 ) |
| 62 |
58 61
|
eqsstrrd |
⊢ ( ( 𝑐 ∈ 𝒫 ran 𝑅 ∧ ∪ 𝑐 = ( ℝ × ℝ ) ) → ( ℝ × ℝ ) ⊆ ∪ ran 𝑅 ) |
| 63 |
62
|
rexlimiva |
⊢ ( ∃ 𝑐 ∈ 𝒫 ran 𝑅 ∪ 𝑐 = ( ℝ × ℝ ) → ( ℝ × ℝ ) ⊆ ∪ ran 𝑅 ) |
| 64 |
57 63
|
ax-mp |
⊢ ( ℝ × ℝ ) ⊆ ∪ ran 𝑅 |
| 65 |
47 64
|
eqssi |
⊢ ∪ ran 𝑅 = ( ℝ × ℝ ) |