Metamath Proof Explorer


Theorem dya2iocucvr

Description: The dyadic rectangular set collection covers ( RR X. RR ) . (Contributed by Thierry Arnoux, 18-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
dya2ioc.1 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
dya2ioc.2 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) )
Assertion dya2iocucvr ran 𝑅 = ( ℝ × ℝ )

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
2 dya2ioc.1 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
3 dya2ioc.2 𝑅 = ( 𝑢 ∈ ran 𝐼 , 𝑣 ∈ ran 𝐼 ↦ ( 𝑢 × 𝑣 ) )
4 unissb ( ran 𝑅 ⊆ ( ℝ × ℝ ) ↔ ∀ 𝑑 ∈ ran 𝑅 𝑑 ⊆ ( ℝ × ℝ ) )
5 vex 𝑢 ∈ V
6 vex 𝑣 ∈ V
7 5 6 xpex ( 𝑢 × 𝑣 ) ∈ V
8 3 7 elrnmpo ( 𝑑 ∈ ran 𝑅 ↔ ∃ 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = ( 𝑢 × 𝑣 ) )
9 simpr ( ( ( 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 ) ∧ 𝑑 = ( 𝑢 × 𝑣 ) ) → 𝑑 = ( 𝑢 × 𝑣 ) )
10 pwssb ( ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀ 𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ )
11 ovex ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V
12 2 11 elrnmpo ( 𝑑 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
13 simpr ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
14 simpll ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑥 ∈ ℤ )
15 14 zred ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑥 ∈ ℝ )
16 2re 2 ∈ ℝ
17 16 a1i ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 2 ∈ ℝ )
18 2ne0 2 ≠ 0
19 18 a1i ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 2 ≠ 0 )
20 simplr ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ℤ )
21 17 19 20 reexpclzd ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ )
22 2cnd ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 2 ∈ ℂ )
23 22 19 20 expne0d ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ≠ 0 )
24 15 21 23 redivcld ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
25 1red ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 1 ∈ ℝ )
26 15 25 readdcld ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑥 + 1 ) ∈ ℝ )
27 26 21 23 redivcld ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
28 27 rexrd ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ* )
29 icossre ( ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) → ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ )
30 24 28 29 syl2anc ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ )
31 13 30 eqsstrd ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑑 ⊆ ℝ )
32 31 ex ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) → 𝑑 ⊆ ℝ ) )
33 32 rexlimivv ( ∃ 𝑥 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) → 𝑑 ⊆ ℝ )
34 12 33 sylbi ( 𝑑 ∈ ran 𝐼𝑑 ⊆ ℝ )
35 10 34 mprgbir ran 𝐼 ⊆ 𝒫 ℝ
36 35 sseli ( 𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ )
37 36 elpwid ( 𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ )
38 35 sseli ( 𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ )
39 38 elpwid ( 𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ )
40 xpss12 ( ( 𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ ) → ( 𝑢 × 𝑣 ) ⊆ ( ℝ × ℝ ) )
41 37 39 40 syl2an ( ( 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 ) → ( 𝑢 × 𝑣 ) ⊆ ( ℝ × ℝ ) )
42 41 adantr ( ( ( 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 ) ∧ 𝑑 = ( 𝑢 × 𝑣 ) ) → ( 𝑢 × 𝑣 ) ⊆ ( ℝ × ℝ ) )
43 9 42 eqsstrd ( ( ( 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 ) ∧ 𝑑 = ( 𝑢 × 𝑣 ) ) → 𝑑 ⊆ ( ℝ × ℝ ) )
44 43 ex ( ( 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 ) → ( 𝑑 = ( 𝑢 × 𝑣 ) → 𝑑 ⊆ ( ℝ × ℝ ) ) )
45 44 rexlimivv ( ∃ 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = ( 𝑢 × 𝑣 ) → 𝑑 ⊆ ( ℝ × ℝ ) )
46 8 45 sylbi ( 𝑑 ∈ ran 𝑅𝑑 ⊆ ( ℝ × ℝ ) )
47 4 46 mprgbir ran 𝑅 ⊆ ( ℝ × ℝ )
48 retop ( topGen ‘ ran (,) ) ∈ Top
49 1 48 eqeltri 𝐽 ∈ Top
50 49 49 txtopi ( 𝐽 ×t 𝐽 ) ∈ Top
51 uniretop ℝ = ( topGen ‘ ran (,) )
52 1 unieqi 𝐽 = ( topGen ‘ ran (,) )
53 51 52 eqtr4i ℝ = 𝐽
54 49 49 53 53 txunii ( ℝ × ℝ ) = ( 𝐽 ×t 𝐽 )
55 54 topopn ( ( 𝐽 ×t 𝐽 ) ∈ Top → ( ℝ × ℝ ) ∈ ( 𝐽 ×t 𝐽 ) )
56 1 2 3 dya2iocuni ( ( ℝ × ℝ ) ∈ ( 𝐽 ×t 𝐽 ) → ∃ 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ ) )
57 50 55 56 mp2b 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ )
58 simpr ( ( 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ ) ) → 𝑐 = ( ℝ × ℝ ) )
59 elpwi ( 𝑐 ∈ 𝒫 ran 𝑅𝑐 ⊆ ran 𝑅 )
60 59 adantr ( ( 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ ) ) → 𝑐 ⊆ ran 𝑅 )
61 60 unissd ( ( 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ ) ) → 𝑐 ran 𝑅 )
62 58 61 eqsstrrd ( ( 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ ) ) → ( ℝ × ℝ ) ⊆ ran 𝑅 )
63 62 rexlimiva ( ∃ 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = ( ℝ × ℝ ) → ( ℝ × ℝ ) ⊆ ran 𝑅 )
64 57 63 ax-mp ( ℝ × ℝ ) ⊆ ran 𝑅
65 47 64 eqssi ran 𝑅 = ( ℝ × ℝ )